13

Working with JDBC 4.0

Introducing JDBC 466

Exploring the Features of JDBC 473

i

Exploring Major Classes and Interfaces 480

Exploring JOBC Processes with the javax.sql Package 538

Chapter 13

Enterprise applications that are created using the Java EE technology need to interact with databases to store
application-specific information. For example, search engines use databases to store information about the Web
pages and job portals use databases to store information about the candidates and employers who access the
Web sites to search and advertise jobs on the Internet. Interacting with database requires database connectivity,
which can be achieved by using the Open Database Connectivity (ODBC) driver. This driver is used with Java
Database Connectivity (JDBC) to interact with various types of databases, such as Oracle, MS Access, My
SQL, and sQL server. JDBC is an Application Programming Interface (API), which is used in Java
programming to interact with databases. JDBC works with different database drivers to connect to different
databases.

This chapter focuses on JDBC, which is used to provide database connectivity to enterprise applications. In this
chapter, you first learn about JDBC drivers as well as the features of JDBC 3.0 and 4.0 versions. You also learn
about the JDBC APIs that provide various classes and interfaces to develop a JDBC application. Next, the use of
java.sql and javax.sql pacakages in JDBC implmentation is described in detail, Towards the end, you learn to
work with transactions in the JDBC application.

Introducing JDBC

JDBC™ is a specification from Sun Microsystems that provides a standard abstraction (API / protocol) for Java

applications to communicate with different databases. It is used to write programs required to access databases.

JDBC, along with the database driver, is capable of accessing databases and spreadsheets. JDBC can also be

defined as a platform-independent interface between a relational database and the Java programming language.

The enterprise data stored in a relational database can be accessed with the help of JDBC APIs. The JDBC APl

allows Java programs to execute SQL statements and retrieve results. The classes and interfaces of JDBC allow a

Java application to send requests made by users to the specified Database Management System (DBMS). Instead

of allowing the drivers to target a specific database, the users can specify the name of the database used to

retrieve the data.

The following are the characteristics of JDBC:

Q Supports a wide level of portability.

Q Provides Java interfaces that are compatible with Java applications, These providers are also responsible for
providing the driver services,

O Provides higher level APIs for application programmers. The JDBC AP1 specification is used as an interface
for the application and DBMS,

Q Provides JDBC API for Java applications. The JDBC call to a Java application is made by the SQL statements.
These statements are responsible for the entire communication of the application with the database. The
user can send any type of SQL queries as requests to a database,

Components of JDBC

JDBC has four main components through which it can communicate with a database, These components are as
follows:

Q The JDBC API-Provides various methods and interfaces for easy and effective communication with the
databases. It also provides a standard to connect a database to a client application. The application-specific
user processes the SQL commands according to his need and retrieves the result in the ResultSet object. The
JOBC API provides two main packages, java.sql, and javax.sql, to interact with databases. These
packages contain the Java SE and Java EE platforms, which conform to the write once run anywhere
(WORA) capabilities of Java.

Q The JDBC DriverManager— Loads database-specific drivers in an application to establish a connection with
the database. It is also used to select the most appropriate database-specific driver from the previously
loaded drivers when a new connection to the database is established. In addition, it is used to make
database-specific calls to the database to process the user requests,

0O The JDBC test suite —Evaluates the JDBC driver for its compatibility with Java EE, The JDBC test suite is
used to test the operations being performed by JDBC drivers.

466

Working with JDBC 4.0

O The JDBC-ODBC bridge —Connects database drivers to the database. This bridge translates JDBC method
calls to ODBC function calls, and is used to implement JDBC for any database for which an ODBC driver is
available. The bridge for an application can be availed by importing the sun. jdbc . odbc package, which
contains a native library to access the ODBC features.

JDBC Specification

With the emergence of JDBC 4.0, various changes, such as support for Binary Large Object (BLOB) and Character
Large Object (CLOB) have been introduced in JDBC AP

The specifications that are available in different versions of JDBC are as follows:

=)
[m)

Q

JDBC 1.0~ Provides basic functionality of JDBC.

JDBC 2.0—Provides JDBC API in two sections, the JDBC 2.0 Core API and the JDBC 2.0 Optional Package
APL

JDBC 3.0~Provides classes and interfaces in two Java packages, java.sgl and javax.sql. JDBC 3.0 is a
combination of JDBC 2.1 core API and the JDBC 2.0 Optional Package APL. The JDBC 3.0 specification
provides performance optimization features and improves the features of cornection pooling and
statement.

JDBC 4.0 —Provides the following advance features:
¢ Autoe loading of the Driver interface

¢ Connection management

* ROWID data type support

* Annotation in SQL queries

» National Character Set Conversion Support

¢ Enhancement to exception handling

e Enhanced support for large objects

JDBC 4.0 is the new and advance specification used with Java EE 5 and the same version of JDBC is followed in
Java EE 6.

JDBC Architecture
A JDBC driver is required to process the SQL requests and generate results. JDBC API provides classes and
interfaces to handle database-specific calls from users. Some of the important classes and interfaces defined in
JDBC AP are as follows:

Q

[WOy o R [Y 8 Y O Y

DriverManager
Driver

Connection
Statement
PreparedStatement
CallableStatement
ResultSet
DatabaseMetaData
ResultSetMetaData
SqlData

Blob

Clob

The DriverManager in the JDBC API plays an important role in the JDBC architecture. It uses some database-
specific drivers to effectively connect enterprise applications to databases.

Figure 13.1 demonstrates the simple JDBC architecture:

Chapter 13

Applcation {Java
Servlet. applet etc)

'

[The JDBC API
[DniverManager }

IBBC Drivers

[rata Source

Figure 13.1: Displaying the Architecture of JDBC

As shown in Figure 13.1, the Java application that needs to communicate with a database has to be programmed
using JDBC API The JDBC driver (third-party vendor implementation) supporting data source, such as Oracle,
and SQI., has to be added in the Java application for JDBC support, which can be done dynamically at run time.
The dynamic plugging of the JDBC drivers ensures that the Java application is vendor independent. In other
words, if you want to communicate with any data source through JDBC, you need a JDBC driver that
intelligently communicates with the respective data source. Currently, there are more than 220 JDBC drivers
available in the market, which are designed to communicate with different data sources.

Some of the available drivers are pure Java drivers and are portable for all the environments; whereas, others are
partial Java drivers and require some libraries to communicate with the database. You need to understand the
architectures of all the four types of drivers to decide which driver to use to communicate with the data source.

Let’s now learn about the JDBC drivers in detail.

Exploring JDBC Drivers

The different types of drivers available in JDBC are listed in Table 13.1:
Table 13.1: Types of JOBC Drivers

Type-1 Driver Refers to the Bridge Driver (]DBC-OD bridge)

Type-2 Driver Refers to a Partly Java and Partly Native code driver (Native-API Partly Java
driver)

Type-3 Driver Refers to a pure Java driver that uses a middleware driver to connect to a database
(Pure Java Driver for Database Middleware)

Type4 Driver Refers to a Pure Java driver (Pure), which is directly connected to a database

Now let’s discuss each of these drivers in detail.

Describing the Type-1 Driver

The Type-1 driver acts as a bridge between JDBC and other database connectivity mechanisms, such as ODBC.
An exampie of this type of driver is the Sun JDBC-ODBC bridge driver, which provides access to the database
through the ODBC drivers. This driver also helps the Java programmers to use JDBC and develop Java
applications to communicate with existing data sources. This driver is included in the Java2 SDK within the

468

Working with JDBC 4.0

sun. jdbe. odlbc package. This driver converts IDBC calls into ODBC calls and redirects the request to the
ODBC driver. The architecture of the Type-1 driver is shown in Figure 13.2:

JDBC-ODBC Bridge Driver (Type-1) Architecture
HEODBE

shBC

Driver

Figure 13.2: Displaying the Architecture of the JDBC Type-1 Driver

Figure 13.2 shows the architecture of the system that uses the JDBC-ODBC bridge driver to communicate with
the respective database. In Figure 13.2, SP APl refers to the APls used to make a Native DBMS specific call.
Figure 13.2 shows the following steps that are involved in establishing connection between a Java application
and data source through the Type-1 driver:

1.
2,

The Java application makes the JDBC call to the JDBC-ODBC bridge driver to access a data source.

The JDBC-ODBC bridge driver resolves the JDBC call and makes an equivalent ODBC call to the ODBC
driver,

The ODBC driver completes the request and sends responses to the JDBC-ODBC bridge driver.

The JDBC-ODBC bridge driver converts the response into JDBC standards and displays the result to the
requesting Java application.

The Type-1 driver is generally used in the development and testing phases of Java applications.

Advantages of the Type-1 Driver

Some advantages of the Type-1 driver are as follows:

Q
a
a

Represents single driver implementation to interact with different data stores
Allows us to communicate with all the databases supported by the ODBC driver
Represents a vendor independent driver

Disadvantages of the Type-1 Driver

Some disadvantages of the Type-1 driver are as follows:

Q
]

(m]
[u]

Decreases the execution speed due to a large number of translations

Depends on the ODBC driver; and therefore, Java applications also become indirectly dependent on ODBC
drivers

Requires the ODBC binary code or ODBC client library that must be installed on every client
Uses Java Native Interface (JNI) tomake ODBC calls

The preceding disadvantages make the Type-1 driver unsuitable for production environment and should be
used only in case where no other driver is available. The Type-1 driver is also not recommended when Java
applications are required with auto-installation applications, such as applets.

469

Chapter 13

Describing the Type-2 Driver {Java to Native API)

The JDBC call can be converted into the database vendor specific native call with the help of the Type-2 driver.
In other words, this type of driver makes Java Native Interface (JNI) calls on database specific native
client APL These database specific native client APIs are usually written in C and C++.

The Type-2 driver follows a 2-tier architecture model, as shown in Figure 13.3:
Type-2 Driver Architecture .

£

Figure 13.3: Displaying the Architecture of the JDBC Type-2 Driver

As shown in Figure 13.3, the Java application that needs to communicate with the database is programmed using
JDBC APL These JDBC calls (programs written by using JDBC API) are converted into database specific native
calls in the client machine and the request is then dispatched to the database specific native libraries. These
native libraries present in the client are intelligent enough to send the request to the database server by using
native protocol.

This type of driver is implemented for a specific database and usually delivered by a DBMS vendor. However, it
is not mandatory that Type-2 drivers have to be implemented by DBMS vendors only. An example of Type-2
driver is the Weblogic driver impiemented by BEA Weblogic. Type-2 drivers can be used with server-side
applications. It is not recommended to use Type-2 drivers with client-side applications, since the database
specific native libraries should be installed on the client machines.

Advantages of the Type-2 Driver
Some advantages of the Type-2 driver are as follows:
D Helps to access the data faster as compared to other types of drivers
0 Contains additional features provided by the specific database vendor, which are also supported by the
JDBC specification
Disadvantages of the Type-2 Driver
Some disadvantages of the Type-2 driver are as follows:

O Requires native libraries to be installed on client machines, since the conversion from JDBC calls to database
specific native calls is done on client machines

O Executes the database specific native functions on the client JVM, implying that any bug in the Type-2

driver might crash the JVM
O Increases the cost of the application in case it is run on different platforms
Examples of the Type-2 Driver

Some examples of the Type-2 driver are as follows:

D OCI (oracle Call Interface) Driver— Communicates with the Oracie database server. This driver
converts JDBC calls into Oracle native library) calls.

470

Working with JDBC 4.0

QO Weblogic OCI Driver for Oraclé—Makes NI calls to Weblogic library functions, The Weblogic OCI
driver-for Oracle is similar to the Oracle OCI driver.

& Type-2 Driver for Sybase — Converts JDBC calls into Sybase dblib or ctlib calls, which are native libraries to
connect to Sybase.

Describing the Type-3 Driver (Java to Network Protocol/All Java Driver)

The Type-3 driver transiates the JDBC calls into a database server independent and middleware server-specific
calls. With the help of the middleware server, the translated JOBC calls are further translated into database
server specific calls.

The Type-3 drivers follow the 3-tier architecture model, as shown in Figure 13.4:
Type-3 Driver Architecture

Driver

Server
Driver

Figure 13.4: Displaying the Architecture of the JDBC Type-3 Driver

As shown in Figure 13.4, a JDBC Type-3 driver listens for JDBC calls from the Java application and translates
them inte middleware server specific calls. After that, the driver communicates with the middleware server over
a socket. The middleware server converts these calls into database specific calls. These types of drivers are also
known as net-protocol fully Java technology-enabled or net-profocol drivers.

The middleware server can be added in an application with some additional functionality, such as pool
management, performance improvement, and connection availability. These functionalities make the Type-3
driver architecture more useful in enterprise applications. Type-3 driver is recommended to be used with
applets, since this type of driver is auto downloadable.

Advantages of the Type-3 Drivers

Some advantages of the Type-3 driver are as follows:

Q Serves as a all Java driver and is auto downloadable.

O Dees not require any native library to be installed on the client machine.

O Ensures database independency, because a single driver provides accessibility to different types of
databases. _

O Does not provide the database details, such as username, password, and database server location, to the
client. These details are automatically configured in the middleware server.

Q Provides the facility to switch over from one database to another without changing the client-side driver
classes. Switching of databases can be implemented by changing the configurations of the middleware
server.

471

Chapter 13

Disadvantage of the Type-3 Driver

The main disadvantage of the Type-3 driver is that it performs the tasks slowly due to the increased number of
network calls as compared to Type-2 drivers. In addition, the Type-3 driver is also costlier as compared to other
drivers.

Examples of the Type-3 Drivers
Some examples of the Type-3 driver are as follows:
Q IDS Driver—Listens for JDBC calls and converts them into 1DS Server specific network calls. The Type-3
driver communicates over a socket to IDS Server, which acts as a middleware server.

O Weblogic RMI Driver— Listens for JDBC calls and sends the requests from the client to the middleware
server by using the RMI protocol. The middleware server uses a suitable JOBC driver to communicate with
a database.

Describing the Type-4 Driver (Java to Database Protocol)

The Type-4 driver is a pure Java driver, which implements the database protocol to interact directly with a
database. This type of driver does not require any native database library to retrieve the records from the
database. In addition, the Type-4 driver translates JDBC calls into database specific network calls.

The Type-4 drivers follow the 2-tier architecture medel, as shown in Figure 13.5;

Type- 4 Driver Architecture

Figure 13.5: Displaying the Architecture of the JDBC Type-4 Driver

As shown in Figure 13.5, the Type-4 driver prepares a DBMS specific network message and then communicates
with database server over a socket. This type of driver is lightweight and generally known as a thin driver. The
Type-4 driver uses database specific proprietary protocols for communication. Generally, this type of driver is
implemented by DBMS vendors, since the protocols used are proprietary.

You can use the Type-4 driver when you want an auto downloadable option for the client-side applications. In
addition, it can be used with server-side applications.
Advantages of the Type-4 Driver
Some advantages of the Type-4 driver are as follows:
Q Serves as a pure Java driver and is auto downloadable
U Does not require any native library to be installed on the client machine

472

Working with JDBC 4.0

Q@ Uses database server specific protocol
8@ Does not require a middleware server

Disadvantage of the Type-4 Driver

The main disadvantage of the Type-4 driver is that it uses database specific proprietary protocot and is DBMS
vendor dependent.

Exampies of the Type-4 Driver
Some examples of the Type-4 driver are:
QO Thin Driver for Oracle from Oracle Corporation
0 Weblogic and Mssqlserverd for MS SQL server from BEA systems

Exploring the Features of JDBC

JDBC 3.0 specification provides several features and procedures that can be used by Java database programmers.
The core packages, along with the additional features, are present in the JDBC 3.0 version. Let’s explore these
features in detail next.

Additional Features of JDBC 3.0
The features introduced in JDBC 3.0 are as follows:

3O The JDBC metadata API—Includes the instance of the ParameterMetaData interface to describe the

parametér properties and their types used in the Preparedstatement interface.
O Named parameters — Updates the CallableStatement object so that users can access the parameters by
using the names rather than the indexes of the parameters.
@ Changes to data types —Include several new and modified data types. Few data type changes made in the
JDBC 3.0 specification are:
» Large objects (BLOB, CLOB, and REF}— Allow you to update the BLOB, CLOB, and REF type values
in a database. Two new data types, BOOLEAN and DATALINK, have been introduced in JDBC 3.0

¢ ResultSet values — Update the values of the ResultSet and ARRAY types available.

¢ New data types—Include two new data types, javasql.Types.DATALINK and
java.sql.Types.BOOLEAN. These data types update the SQL data types with the same name. The
DATALINK data type is capable of accessing the external resources; whereas, the BOOLEAN data type
is equivalent to the BIT type. The value of the DATALINK data type is accessed by using the getURL()
method, and the respective value of the boolean data type is accessed by using the getBoolean()
method. These two methods take an instance of the ResultSet interface associated with the application.

e Access to the auto-generated keys— Helps access the values of the auto-generated keys. You need to

specify Statement. RETURN_GENERATED_KEYS or StatementNO_GENERATED_KEYS in the
execute() method to access the values of the auto-generated keys. The values for the auto-generated
keys can be accessed in ResultSet. The ResultSet contains the values for the auto-generated keys and
the getGeneratedKeys() instance method is used to access the values of the auto-generated keys.

D Connector relationship—Maintains the connection between JDBC and J2EE (Java EE). The connector
architecture provides a set of connectors through which the enterprise applications connect to JDBC. This
connection provides a resource adapter, which is used to connect JDBC to remote systems. The JDBC API
provides three main service providers to define the connector architecture, which are as follows:

* ConnectionPoolDataSource—Refers to an interface provided by the JDBC APL The
ConnectionPoclDataSource interface is used to connect the applications to JDBC DataSource and back-
end systems.

e XaDataSource—Refers to a feature of JDBC 2.0 API Optional package. XADataSource provides
transactional support to enterprise applications for accessing the resources.

¢ Security Management: Maintains the security mechanism for enterprise applications.

473

Chapter 13

O Resultset functionality ~Requires the programmer to close all the connections and results manually in
JDBC programming. JDBC 3.0 supports the functionality of cursor holdability to ensure that the Connection
and ResultSet objects are closed. You need to maintain the following two constants to maintain the
ResultSet holdability within an application: ‘

* HOLD_CURSOR_OVER_COMMIT ~Ensures that ResultSet objects are open till a commit
operation is performed

* CLOSE_CURSOR_AT_COMMIT —Ensures that ResultSet objects are closed after a commit
operation is performed

O Returning multiple results —Refers to a feature of the JDBC 3.0 specification to provide the Statement
interface, which can access muitiple results simultaneously. The Statement interface includes a new method
in JDBC API to access multiple results. The new method added to the JDBC API is an overloaded form of
the getMoreResults{) method. It includes an integer flag that is used to specify the behavior of
ResultSets. The flags included in the JDBC API are as follows:

* CLOSE_ALL_RESULTS —~Closes all the previously opened ResultSets by calling the getMoreResults{)
method

* CLOSE_CURRENT_RESULT—Closes the current ResultSet object by calling the getMoreResults()
method

* KEEP_CURRENT_RESULT —Retains the current ResultSet object by using the getMoreResult() method

Q Connection pooling: Allows you to maximize the performance of enterprise applications in the JDBC 3.0
specification.

Table 13.2 describes the properties of connection pooling;

Table 13.2: Properties of Connection Pooling

maxStatements Specifies the maximum number of statements that the connection pool can keep open

initialPoolSize Specifies the number of physical connections that the pool should keep open while being
initialized

minPoolSize Specifies the minimum number of physical connections that can remain in the pool while
it is being initialized

maxPoolSize Specifies the maximum number of physical connections that can remain in the pool while

. it is being initialized

maxldleTime Specifies the time duration within which an unused pool should remain open prior to the
closing of the connection

propertyCycle Specifies the time interval, in seconds, that a pool should wait for the property policy

O PreparedStatement pooling— Allows you to compile the commonly used SQL statements to improve the
performance of the statement. The PreparedStatement pooling is needed to increase the lifetime of the
PreparedStatement object. The concept of the Preparedstatement pooling comes from the
connection pooling mechanism.

Q Using Savepoints— Add the most exciting features to JDBC 3.0 specifications. Transactions in a database
ensure that the persisted data remains in a consistent state. However, sometimes the data of a current
transaction might be rolled back. A Savepoint is an intermediate point within a transaction at which a
transaction may be rolled back.

Now, let's discuss about the new features that have been added to JDBC 4.0.

New Features in JDBC 4.0

Many new and advanced functionalities were introduced in JDBC 4.0. JDBC 4.0 includes the enhanced features
of JDBC, which are mentioned as follows:

474

Working with JDBC 4.0

O Auto loading of the JDBC driver class— Provides auto loading of the JDBC drivers instead of loading them
explicitly. In the previous versions of JDBC, you had to use the Class . forName () method to load the
driver in a database. In JDBC 4.0, when the getConnection()method is called in an application, the
DriverManager object automatically loads a driver in the database.

O Connection management enhancement — Allows the database programmers to establish a new connection
by specifying the host name and an available port number. This can be done by using a set of parameters to
maintain a standard connection. Connection management enhancement also adds some methods to the pre-
existing interfaces, such as Connection and Statement.

O Support for Rowld—Adds the RowId interface to the JDBC 4.0 specification to provide support for the
ROWLD data type. RowId is useful in tables where multiple columns do not have a unique identifier.

O Dataset implementation of SQL using annotations—Introduces the concept of annotation while using
SQL, which ultimately results in fewer lines of code. The annotations are used along with the queries. The
query results can be bound to the Java classes to speed up the processing of the query output. The JDBC 4.0
specification provides the following two main annotations:

e The SELECT annotation-Retrieves query specific data from a database. You can use the SELECT
annotation in a SELECT query within a Java class. The attributes of the SELECT annotation are
described in Table 13.3;

Table 13.3: Atiributes of the SELECT Annotation

String Specifies a simple SQL SELECT query.

Sql

Value B String Represents the value specified for the sql attribute.

Table name String, Specifies the name of the table created in a database.

Readonly, connected, scrollable boolean Indicates whether DataSet is ReadOmly or Updatable. It also

: indicates whether or not DataSet is connected to a back-end

database. In addition, it indicates whether or not it is scrollable
when the query is used in a connection.

allColumnsMapped boolean Indicates whether or not the column names used in the
annotations are mapped to the corresponding fields in DataSet.

e The UPDATE annotation— Updates the queries used in database tables. The UPDATE annotation must
include the SQL annotation type to update the fields of a table.

O SQL exception handling enhancements — Introduces certain enhancements to the SQLException class,
which are as follows:

» New exception subclasses—Provide new classes as enhancement to SQLException. The new classes
that are added to the SOLException exception class include SQL non-transient exception and SQL
transient exception. The SQL non-transient exception class is called when an already performed JDBC
operation fails to run, unless the cause of the SQLException exception is corrected. On the other hand,
the SQL transient exception class is called when a previously failed JDBC operation succeeds after retry.

e Casual relationships — Support the Java SE chained exception mechanism by the SQLException class
(also known as Casual facility). It allows handling multiple SQL exceptions raised in the JDBC
operation.

e Support for the for-each loop—Implements the chain of exceptions in a chain of groups by the
SOLException class. The for-each loop is used to iterate on these groups.

¢ SQL XML support—Introduces the concept of XML support in SQL DataStore. Some additional APIs
have been added to JDBC 4.0 to provide this support.

475

Chapter 13

Describing JDBC APIs

JDBC API is a part of the JDBC specification and provides a standard abstraction to use JDBC drivers. The JDBC
API provides classes and interfaces that are used by Java applications to communicate to databases. The JDBC
driver communicates with a relational database for any requests made by a Java application by using the JDBC
APL The JDBC driver not only processes the SQL commands, but also sends back the result of processing of
these SQL commands. In addition, the JDBC API can be used to access the required data from all the database
types, such as SQL Server, Sybase, and Oracle. A programmer does not need to write different programs to
access the data from the database. The JDBC API satisfies the write onee and run amywhere behavior of Java.
Therefore, JDBC is used largely to access data from various data sources.

The JDBC API is based upon the X/open Call Level Interface (CLI) specification and SQL standard statements.
This is also the basic standatd for ODBC. The JDBC APl is a part of the Java Standard Edition (Java SE) of Java
platform and is available to Java platform Enterprise Edition (Java EE) as well.

The JDBC 4.0 API specification is used to process and access data sources by using Java. The API includes
drivers to be installed to access the different data sources. The API 1s used with SQL statements to read and write
data from any data source in a tabular format, This facility to access data from the database is available through
the javax.sql.RowSet interface. JDBC 4.0 APl is mainly divided into the following two packages:

O javasgl

Q javax.sql

These two packages are included in J2SE and are even available to the J2EE piatform.
Now, let’s discuss them in detail.

The java.sql Package
The java.sql package is also known as the JDBC core APL This package includes the interfaces and methods
to perform JDBC core operations, such as creating and executing SQL queries. The java. sql package consists
of the interfaces and classes that need to be implemented in an application to access a database. The developer
uses these operations to access the database in an application. The classes in the java.sqgl package can be
classifigd into the following categories based on different operations:

Connection management

Database access

Data types

Database metadata

DCoooo

Exceptions and warnings
Let's discuss these categories in detail.

Connection Management

The connection management category contains the classes and interfaces used to establish a connection with a
database. '

Table 13.4 describes the classes and interfaces of the connection management category:

Table 13.4: Classes and Interfaces of Connection Management

java.sgl.Connection Creates a connection with a specific database. You can use SQL statements to retrieve the
desired results within the context of a connection,

java.sql.Driver Creates and registers an instance of a driver with the DriverManager interface.

java.sql.DriverManager Provides the functionality to manage database drivers,

java.sql.DriverPropertylnfo Retrieves the properties required to obtain a connection.

java.sql.5QLPermission Sets up logging stream with DriverManager.

476

Working with JDBC 4.0

Database Access

SQL. queries are executed to access the application-specific data after a connection is established with a database.
The interfaces listed in Table 13.5 allow you to send SQL statements to the database for execution and read the
results from the respective database:

Table 13.5: Interfaces of the Database Access Cafegory

java.sgl.CallabieStatement

Executes stored procedures.

java.sql.PreparedStatement

Allows the programmer to create parameterized SQL statements.

java.sql.ResultSet

Abstracts the results of executing the SELECT statements. This interface provides
methods to access the results row-by-row.

java.sql.Statement

Executes SOL statements over the underlying connection and access the results.

java.sgl.Savepoint

Specifies a Savepoint in a transaction.

The java.sql.PreparedStatement and java.sql.CallableStatement interfaces extend the java.sql.Statement interface.

Data Types

In the JDBC AFI, various interfaces and classes are defined to hold the specific types of data to be stored in a
database. For example, to store the BLOB type values, the Blob interface is declared in the java sql package.

Table 13.6 describes the classes and interfaces of various data types in the java. sql package:

Table 13.6: Classes and Interfaces for Data Types in the java.sgl Package

java.sql. Array Provides mapping for array of a collection.

java.sql.Blob Provides mapping for the BLCB SQL type.

java.sqi.Clob Provides mapping for the CLOB SQL type.

javaSQL.Date Provides mapping for the SQL type DATE. Although, the java.util.Date class

provides a general-purpose representation of date, the java.sqgl.Date class is
preferable for representing dates in database-centric applications, as the type maps
directly to SQL DATE type. Note that the java.sql.Date class extends the
java.util.Date class,

java.sql.Nclob

Provides mapping of the Java language and the National Character Large
Cbject types. The Nelob interface allows you to store the values of the character string
ap to the maximum length.

java.sql.Ref

Provides mapping for SQL type REF .

java.sql.Rowld

Provides mapping for Java with the SQL RowId value.

java.sql.Struct

Provides mapping for the SQL structured types.

java.sql.SQLXML

Provides mapping for the SQL XML types available in the JDBC APL

java.sql.Time

Provides mapping for the SQL type TIME, and extends the java.uti1,Date class.

java.sql. Timestamp

Provides mapping for the SQL type TIME and extends the java.util.Date class.

java.sql.Types

Holds a set of constant integers, each corresponding to a SQL type.

In addition to the data types mentioned in Table 13.6, the JDBC API provides certain user-defined data types
{UDT) available in JDBC APIL The UDTs available in the java.sql package are listed in Table 13.7:

Table 13.7: Classes and Interfaces for UDT in the java.sqi Package

java.sql.5QLData Provides a mapping between the SQL UDTs and a specific class in Java.
java.sql.5QLInput Provides methods to read the UDT attributes from a specific input stream. The input
stream contains a stream of values depictina the instance of the SQL structured or SQL

477

Chapter 13

Table 13.7: Classes and Interfaces for UDT in the java.sql Package

distinct type.
java.sql.SQlOutput Writes the attributes of the output stream back to the database.

JOBC API also provides some default data types that are associated with a database. The default types include
the DISTINCT and DATALINK types. The DISTINCT data type maps to the base type to which the base type
value is mapped. For example, a DISTINCT value based on a SQL NUMERIC type maps to a
java.math.BigDecimal type. A DATALINK type always represents a java.net . URL object of the URL class
defined in the java.net package.

Database Metadata

The metadata interface is used to retrieve information about the database used in an application. JDBC API
provides certain interfaces to access the information about the databasé used in the application. These metadata
interfaces are described in Table 13.8:

Table 13.8: Classes and Interfaces of Database MetaData

Obtains the database features. This interface is used by driver vendors to ensure that a
user is aware of the capabilities of a database and the JDBC driver used along with the
database.

java.sql ParameterMetaData Allows access to the database types of parameters in prepared statements.

java.sql.DatabaseMetaData

java.sql.ResultSetMetaData Provides methods to access metadata of ResultSet, such as the names of columns, their
types, the corresponding table names, and other properties.

Exceptions and Warnings

JDBC AFI provides classes and interfaces to handle the unwanted exceptions raised in an application. The API
also provides classes to handle warnings related to an application.

Table 13.9 describes the classes for exception handling;

Table 13.9: Classes for Exception Handling

java.sql.BatchUpdateException Updates batches.

java.sgl.DataTruncation Identifies data truncation errors. Note that data types do not always match between
Java and SQL.
java.sql. 5QLException Represents all JDBC-related exception conditions. This exception also embeds all driver

and database-level exceptions and error codes.

java.sql.SQLWarning Represents database access warnings. Instead of catching the SQLWaming exception,
you can use the appropriate methods on java.sgl.Connection,
java.saql . Statement, and java.sqgl.ResultSet to access the warnings.

Let’s now briefly discuss the JDBC extension APIs (javax. sql) available in JDBC APL

The javax.sql Package

The javax.sql package is also called as the JDBC extension AP, and provides classes and interfaces to access
server-side data sources and process Java programs. The JDBC extension package supplements the java.sqgl
package, and provides the following support:

0O DataSource

O Connection and statement pooling
O Distributed transaction

O Rowsets

478

Working with JDBC 4.0

DataSource
The java.sql.DataSource interface represents the data sources related to the Java application.

Table 13.10 describes the interfaces of the DataScource interfaces provided by the javax.sql package:
Table 13.10: Interfaces for DataSource

javax.sql.DataSource Represents the DataSource interface used in an application

javax.sgl.CommonDataSource Provides the metheds that are common between the DataSource, XADataSource and
ConnectionPoolDataScource interfaces

Connection and Statement Pooling
The connections made by using the DataSource objects are implemented on the middle-tier connection pool.
As a result, the functionality to create new database connections is improved. The classes and interfaces available
for connection pooling in the javax. sql package are listed in Table 13.1%:

Table 13.11: Classes and Interfaces for Connection Pooling

javax.sql.ConnectionPoolDataSource Provides a factory for the PooledConnection objects.

javax.sql.PooledConnection Provides an object to manage connection pools.

javax.sql.ConnectionEvent Provides an Event object, which offers information about the occurrence of an
event.

javax.sql.ConnectionEventListener Provides objects used to register the events generated by the

PooledConnection object.

javax.sql.StatementEvent Represents the StatementEvents interface associated with the events that
occur in the PocledConnection interface. The StatementEvents interface
is then sent to the StatementEventListeners instance, which is registered
with the instance of the PooledConnection interface.

javax.sql.StatementEventListener Provides an object that registers the event with an instance of
PooledConnection interface.

Distributed Transaction
The distributed transaction mechanism allows an application to use the data sources on multiple servers in a
single transaction. JDBC API provides certain classes and interfaces to handle distributed transactions over the
middle-tier architecture, as listed in Table 13.12:

Table 13.12: Classes and Interfaces for Distributed Transaction

javax.sql. X AConnection Provides the object that supports distributed transaction over middle-tier architecture
javax.sgl. X ADataSource Provides a factory for the XAConnect ion objects
Rowsets Object

A RowSet object is used to retrieve data in a network. In addition, the RowSet object is able to transmit data
over a network. JDBC API provides the RowSet interface, with its numerous classes and interfaces, to work with
tabular data, as described in Table 13.13:

Table 13.13: Classes and Interfaces for RowSet

javax.sql.RowSetListener Receives notification from the RowSet object on the occurrence of an event

javax.sql.RowSetEvent Provides the event object, which is generated on the occurrence of an event on the
RowSet object

479

Chapter 13

Table 13.13: Classes and Interfaces for RowSet

javax.sgl RowSetMetaData . Prvides information about the RowSet object associated with a database

javax.sql. RowSetReader Populates disconnected Rowset objects with rows of data

javax.sql.RowSetWriter Implements the RewSetWriter object, which is also called RowSet writer
javax.sql.RowSet Retrieves data in a tabular format

Exploring Major Classes and Interfaces

You have already learned about the classes and interfaces of the java. sql and javax.sql packages. Among
these classes and interfaces discussed in the preceding sections, some noteworthy classes and interfaces play an
important role in providing JDBC implementations in a Java application, which we explore in this section. You
can establish a database connection by using the classes and interfaces of JOBC, such as DriverManager and
Driver. These classes and interfaces allow you to load a driver, create a connection, and retrieve or update data
in a database.

Let’s explore the following major classes and interfaces in detail:

Q The DriverManager class

Q The Driver interface

O The Connection interface

U The Statement interface

The DriverManager Class
DriverManager is a non-abstract class in JDBC APL It contains, only one constructor, which is declared private to
imply that this class cannot be inherited or initialized directly. All the methods and properties of this class are
declared as static. The DriverManager class performs the following main responsibilities:

Q@ Maintains a list of DriverInfo objects, where each Driverinfo object holds one Driver implementation class
object and its name

O Prepares a connection using the Driver implementation that accepts the given JDBC URL
Table 13.14 describes the methods of the DriverManager class:

Table 13.14: Methods of the DriverManager Class

public static void deregisterDriver{Driver Drops a driver from the list of drivers maintained by the DriverManager

driver} throws SQLException class.

public static Connection Establishes a connection of a driver with a database. The DriverManager
getConnection(String url) class selects a driver from the list of drivers and creates the connection.
getConnection(String url, Properties infa) Establishes a connection of a driver with a database on the basis of the

URL and info passed as parameters, URL is used to load the selected
driver for a database. The info parameter provides information about the
string/value tags used in the connection,

getConnection(String uri, String username, Establishes a connection of a driver with a database. The DriverManager
String password} class selects a driver from the list of drivers and creates the connection.
Along with URL, it takes two more parameters, username and password.
The username parameter specifies the user for which the connection is
being made, and the password parameter represents the password of the
user.

public static driver getDriver(String url) Locates the requested driver in the DriverManager class. The url
parameter specifies the URL of the requested driver.

public static enumeration getDrivers(} Accesses a list of drivers present in a database.

480

Working with JDBC 4.0

Table 13.14: Methods of the DriverManager Class

public static int getLoginTimeout(} Specifies the maximum time a driver needs to wait to log on to a
database.

public static getLogStream() Returns the logging or tracing PrintStream object.

public static getLogWriter(} Returns the log writer.

public static void println(String message) Prints a message used in a log stream.

public static void Registers a requested driver with the DriverManager class.

registerDriver(Driver driver)

public static void Sets the maximum time that a driver needs to wait while attempting to

setLoginTimeout(int seconds) connect to a database,

public static void Sets the logging or tracing PrintStream object.

setLogStream(PrintStream out)

Ppublic static void Sets the logging or tracing PrintWriter object.

setLogWriter(PrintWriter out)

The Driver Interface
The Driver interface is used to create connection objects that provide an entry point for database connectivity.
Generally, all drivers provide the DriverManager class that implements the Driver interface and helps to
load the driver in a JDBC application. The drivers are loaded for any given connection request with the help of
the DriverManager class. After the Driver class is loaded, its instance is created and registered with the
DriverManager class.

Table 13.15 describes all the methods provided in the Driver interface:

Table 13.15: Mathods of the Driver Interface

i S
public boolean acceptsURL(String url} Checks whether the format of the given URL is according to the driver or
not. in other words, it checks the subprotocol and extra information of
the URL.
public connection connect(String url, Establishes connectivity with a database. The url parameter specifies the
Properties info) JDBC URL that describes the database details to which the driver is to be

connected. The info parameter specifies the information of the tag/value
pair used in the driver.

public int getMajorVersion() Accesses the major version number of the driver.
public int getMinorVersion() Retrieves the minor version number of the driver.
public DriverPropertyInfo[] Retrieves the properties of the driver included in a database,

getPropertyInfo(String url, Properties info)

public boolean jdbcCompliant() Determines whether the driver is JDBC compliant or not. The true value
of the boolean data type represents that the driver is JDBC complaint;
else, this method returns false,

The Connection Interface

The Connection interface is a standard type that defines an abstraction to access the session estabiished with a
database server. JDBC driver provider must implement the Connection interface. The Connection type of
object (an instance of the class that implements the Connection interface) represents the session established
with the data store.

Chapter 13

The Connection interface provides methods to handle the Connection object.
Table 13.16 describes the methods present in the Connection interface:

Table 13.16: Methods of the Connection Interface

public void clearWarnings()throws
SQLException

Clears all the warnings for a Connection object. This method throws
the SQLException exception when an error occurs.

public void close() throws SQLException

Closes a connection and releases the connection object assoctated with
the connected database. It also releases the JDBC resources associated
with the connection.

public void commit() throws SQLException

Comumits the changes made in the previous commit/rollback and
releases any database locks held by the current Connection object.

public Statement createStatement() throws
SQLException

Creates the Statement object to send SQL statements to the specified
database. This method takes no argument; therefore, it can be
executed by using the Statement abject.

public Statement Creates a Statement object, which is used to load the SQL statements
createStatement{int resultSetType, to the specified database. The ResuliSet object generated by this
int resuliSetConcurrency) Statement object is of the mentioned type and concurrency.

public Statement createStatement
{int resultSetType, int resultSetConcurrency,

Creates an object with the mentioned type, concurrency, and
holdability.

int resultSetHoldability)

public boolean getAutoCommit() Retrieves the auto-commit mode for the current Connection object.

public string getCatalog() Gets the name of the current catalog used in the current Connection
object.

public it getHoldability() Gets the current holdability of the ResuliSet object created by using a

Connectien object.

public DatabaseMetaData getMetaData(}

Gets the DatabaseMetadata object containing the metadata
information. You should ensure that the database must be connected
with a connection object.

public int getTransactionlsolation()

Provides the transaction isolation level of the connection object related
to a database.

public Map getTypeMap() Gets a map object related to a connection object.

public SQLwarning getWarnings() Retrieves any warning associated with a connection object.

public boolean isClosed() Specifies whether or not a database connection object is closed.

public boolean isReadOnly() Specifies whether or not a connection object is read-only.

public String nativeSQL(String sqf) Allows you to convert the SQL statements passed to the connection

object into the systems native SOL grammar.

public CallableStatement prepareCall(String sql) Creates a CallableStatement object to call database stored procedures.

public CallableStatement prepareCall(String sql,
int resultSetType, int resultSetConcurrency)

public CallableStatement prepareCall(String sql,
int resultSetType, int resultSetConcurrency,

Creates a CallableStatement object that generates the ResuitSet object
of the specified type and concurrency.

Creates a CallableStatement object that generates the ResultSet object
of the specified type, concurrency, and holdability.

int resultSetHoldability)
public PreparedStatement "Creates a PreparedStatement object to send the SQL statements over a
prepareStatement(String sqf) connection. .

482

Working with JDBC 4.0

public PreparedStatement

Table 13.16: Methods of the Connection Interface

Creates a PreparedStatement object that retrieves auto-generated keys.

prepareStatemnent(String sql,

int autoGeneratedKeys)

public PreparedStatement Creates a PreparedStatement object that retrieves auto-generated keys
prepareStatement{String sql,

int[] columnindexes)

by using a given array.

public PreparedStatement
prepareStatement(String sql, int resultSetType,
int resultSetConcurrency)

Generates a PreparedStatement object that generates the ResultSet
object with the given type and concurrency.

public PreparedStatement
prepareStatement(String sql, int resultSetType,
int resultSetConcurrency,

Generates a PreparedStatement object that generates the ResultSet
object with the given type, concurrency, and holdability.

int resultSetHoldability}

public PreparedStatement Creates a PreparedStatement object that retrieves the auto-generated
prepareStatement(String sql, keys. The columnNames parameter of PreparedStatement is an array
String[] columnMNames) containing the names of the columns that contain the auto-generated

keys in the target table.

public void Releases the savepoint assoctated with the connection object of the
releaseSavepoint{Savepoint savepoint) current transaction,

public void rollback () Rolls back all the transactions and releases any database locks that are

currently done by the connection object.

public void rellback(Savepoint savepoint)

Removes all the changes made by the connection object after a
savepoint object is created.

public void
setAutoCommit(boolean autoCommit)

Sets the current transaction to the connections auto-commit mode.

public void setCatalog(String catalog)

Sets the given catalog name for current Connection object’s database.

public void settHoldability{int holdability)

Changes the holdability of the current connection object.

public void setReadOnly(boolean readOnly)

Sets the connection to the read-only mode to optimize the specified
database.

public setSavepoint(}

Creates an unnamed savepoint.in the current transaction and returmns
the savepoint associated with the previous transactions,

public Savepoint setSavepoint(String name)

Creates a savepoint with the name specified in the current transaction.
It returns the new savepoint object.

public void setTransactionlsolation{int level)

Checks the transaction isolation level of the specified connection
object. ‘

public void setTypeMap(Map map)

Installs the TypeMap object as the current type map for the current
connection.

The Connection interface also provides certain constants that can be used to handle connection transactions.
Table 13.17 describes the constants available in the Connection interface:

Table 13.17: Constants of the Connection interface

public static final int TRANSACTION_NONE

Indicates that connection transactions are not supported in the current
transaction object.

483

Chapter 12

Table 13.17: Constants of the Connection Interface

public static final int Prevents a transaction from reading a row with uncommitted changes.

TRANSACTION_READ_COMMITTED it is only used to read non-repeatable rows in a table,
public static final int Indicates that non-repeatable and phantom reads are allowed in a
TRANSACTION_READ_UNCOMMITTED transaction. It allows a row to be changed during a transaction. The

changed row can be read by other transactions before the changes in
the row are committed.

public static final int Prevents non-repeatable reads and simultaneous transactions in a
TRANSACTION_REPEATABLE_READ single row.
public static final int Prevents reading non-repeatable rows in a table.

TRANSACTION_SERIALIZABLE

Let’s now learn about the Statement interface.

The Statement Interface

The Statement interface defines a standard abstraction to execute the SQL statements requested by a user and
return the results by using the ResultSet object. The Statement object contains a single ResultSet object at a time.
It is possible that the data reading done with the help of one ResultSet object is interleaved with the reading
done by the other. In such a case, each ResultSet object must be generated by different Statement objects. The
execute () method of all the statements implicitly closes the current ResultSet object (if it is open) of a
statement. The Statement interface provides specific methads to execute and retrieve the results from a database.
The PreparedStatement interface provides the methods to deal with the IN parameters; whereas, the
CallableStatement interface provides methods to deal with the I8 and OUT parameters.

The Statement interface also provides certain methods that are used with a database, These methods are
described in Table 13.18:

Table 13.18: Methods of the Statement interface

ey

public void addBatch{String sgl) Adds the SQL commands to the existing list of commands for the
Statement object. These commands are executed in a batch by calling
the executeBatch() method.

public void cancel() Cancels the statement, if the data sources do not support the
statement.

public void clearBatchy(} Clears all the commands listed in the batch of the Statement interface.

public void clearWarnings(} Clears the warnings that are generated on the Statement object. You

should note that after the execution of the clearWarnings() method,
the getWarnings () method returns null, provided a new warning is
not generated for this Statement object.

public void close() Closes the Statement object. Therefore, it releases its control from the
database and connection.

public boolean execute(String sql) Executes the SQL commands that may return multiple result sets
along with one or more update counts,

public boolean execute(String sql, Executes the SQL commands that may return multiple result sets

int autoGeneratedKeys) along with one or more update counts. It also indicates whether a
driver or the auto-generated keys are available for the retrieval.

public boclean execute(String sql, Executes the SQI. commands that may return multiple result sets

int[] columnindexes) { along with one or more update counts. It alse indicates the driver

about the availability of the auto-generated keys in an array. The array
contains the list of the indexes and the tables containing the auto-
generated keys.

Working with JDBC 4.0

Table 13.18: Methods of the Statement Interface

public boolean execute(String sql, Executes the SQL commands that may return multiple result sets
String[] columnNames) along with one or more update counts. It also indicates the driver
about the availability of the auto-generated keys in an array. The array
contains the name of the columns in the target table that contains the
auto-generated keys.

e s o

public int[] executeBatch() Executes the SQL commands in a batch. The method returns the
update count as an integer greater or equal to 0 after the successful
execution of the batch statements. The integer array is used to
represent the array of the SQL commands listed in the batch,

public ResultSet executeQuery{String sql) Executes a SQL command and returns a single ResultSet.

i public int executeUpdate(String sq) Executes the SQL Data Definition Language (DDL) statements, such
; as INSERT, UPDATE, and DELETE.

. publicint executeUpdate(String sql, Executes the SQL statements and notifies the driver about the
int autoGeneratedKeys) availability of the auto-generated keys. The auto-generated keys are
helpful to retrieve data from the database.

public int executeUpdate(String sql, Executes the SQL staterents on the basis of the SQL query and
int[] columnlndexes) ' column index passed as an argument. This methed also notifies the
driver about the availability of the auto-generated keys. The auto-
generated keys are helpful to retrieve data from the database, The
array index of the auto-generated keys indicates the indexes and
tables that contain the auto-generated keys.

public int executeUpdate(String sql, Executes the SQL statements and notifies the driver about the
Stringf{] columnNarnes) availability of the auto-generated keys. These keys are responsible for
data retrieval from the database. The array index of the auto-
generated keys indicates the columns of the target table that contains
the auto-generated keys.

public Connection getConnection() Retrives an object of Connection type, which is used to maintain the
connection of a Java application with a database,

public int getFetchDirection() Retrieves the direction of the rows from the database tables that are

- generated from the ResultSet object. The fetch direction for a
Statement object can be set with the help of the
setFetchDirection () method. If the fetch direction is not set, the
fetch direction is implementation specific.

public int getFetchSize() Gets the number of rows of default fetch size from the current
ResultSet object.

public ResultSet getGeneratedKeys{) Gets the auto-generated keys created by executing the Statement
object.

public int getMaxFieldSize() ' Gets the maximum number of bytes that can be returned for the
column values.

public int getMaxRows{) . Provides the maximum number of rows in a ResultSet produced by
the Statement object.

public boolean getMoreResults() Navigates to the next result in the ResultSet object, It is also usett to
close the currently opened result set.

pubiic int getMoreResults(int current) Navigates to the next result in the object of the statement. Tt deals with
the ResultSet object by using the instructions specified in the given
flag.

public int getQueryTimeout() Provides the number of seconds the driver has to wait to execute the
statements,

public ResuliSet getResultSet() Gets the current ResultSet object generated by the Statement object.

485

Chapter 13

Table 13.18: Methods of the Statement Interface

public int getResultSetConcurrencyf)

Gets the concurrency of the ResultSet object generated by the
Statement object.

public int getResultSetHoldability{)

Gets the holdability of the ResultSet object generated by the Statement
object.

public int getResultSetType()

Retrieves the result set type for the ResultSet object.

public int getUpdateCounty()

Retrieves the current result set as an update count. The value returned
by this method is either a positive or negative value, indicating the
number of records that have been updated in a result set.

public SQLWarning getWarnings{)

Gets the warnings generated on the Statement object.

public void setCursorName(String name)

Sets the cursor name to the given string. The cursor name is used by
the Statement objects to execute this method.

public void
setEscapeProcessing({boolean enable)

Sets the escape processing on or off.

public void setFetchDirection(int direction)

Sets the direction for the driver to process the rows in the ResultSet
object.

public void setFetchSize{int rows)

Sets the number of rows that should be fetched from the database.

public void setMaxFieldSize(int max)

Sets the maximum number of bytes for the ResultSet object to store
binary values.

public void setMaxRows{int max)

Sets the maximum number of rows that a ResultSet can contain.

public void setQueryTimeout(int seconds)

Sets the number of seconds a driver needs to wait for executing the
Statement object.

The Statement interface also comprises few constants. Table 13.19 describes the constants available in the

Statement interface:

public static final int CLOSE_ALL_RESULTS

Table 13.19: Constants of Statement Interface

Closes all the open ResultSet objects. All the ResultSet objects should
be closed before calling the getMoreResults() method.

public static final int
CLOSE_CURRENT_RESULT

Indicates that the current ResultSet connected with the specified
database must be closed before calling the getMoreResults() method,

public static final int EXECUTE_FAILED

Indicates the occurrence of errors while executing a batch statement.

public static final int KEEP_CURRENT_RESULT

Indicates that the current Resultset should not be closed before calling
the getMoreResults() method.

public static final int NO_GENERATED KEYS

Indicates that the generated keys should not be made available for
retrieval.

public static final int
RETURN_GENERATED_KEYS

Indicates that the generated keys should be made available for
retrieval.

public static final int SUCCESS_NO_INFO

Indicates that a batch statement has been executed successfully.

Table 13.19 shows all the required fields in the Statement interface, These are used by a database to communicate

with an application.

486

Working with JDBC 4.0

The Statement object is created after the connection to the specified database is made. This object is created by
usmg the createStatement 0 method of the Con.nectlon interface, as shown in the followmg code smppet
- connection:.con: « Driy i get 'on {ur ”us:ernm 4 p
 Statement Stmt = comcrexteStatement(y; . :
Now let’s discuss how the java.sql package is used to lmplement database connectwlty inan appllcahon

Exploring JDBC Processes with the java.sql Package

The java.sql package is used by a Java application to communicate with a database. The JDBC application-
specific code should be written within an application that has to comununicate with the database. There are some
basic steps to use JDBC in a Java application. Let's now discuss the basic steps involved in using JDBC in an
application. The following heads help you to understand how JDBC implementations are provided in a Java
application by using the java . sql package:

Basic JDBC steps

Simple JDBC application

PreparedStatement interface
CallableStatement interface
ResultSets

Batch updates

DooocOo0REaAOE

Advance data types
Now, let’s discuss each of them in detail.

Understanding Basic JDBC Steps

To establish a connection with a database and retrieve the desired results, you need to perform various steps. For
example, you need to register a driver with the DriverManager object, obtain a coennection, and execute SQL
queries.

Figure 13.6 shows the basic steps involved in using JDBC to write a database program in Java:

Figure 13.6: Showing Basic Steps to use JOBC
Figure 13.6 shows the following broad steps that need to be performed to implement JDBC in Java application:
1. Obtaining a connection '

2. Creating a JDBC Statement object

3. Executing SQL staternents

4. Closing the connection

Let's discuss each of thetn in detail.

487

Chapter 13

Obtaining a Connection

To obtain an object of the Connection class, you need to first register a driver with the DriverManager class by
invoking the registerDriver() method, setting the System property, or invoking the Class. forName () method.
Then, the connection is obtained by using the java.sql.DriverManager class.

You need to perform the following steps to obtain a connection using the DriverManager class:
1. Register a Driver object with DriverManager

2. Establish a connection using DriverManager

Now, let’s discuss each of these steps in detail.

Registering a Driver object with DriverManager
Registering a driver with the DriverManager class makes the registered driver available to the DriverManager
class, so that the DriverManager object can use it to establish a connection with the database. When a driver is
registered with the DriverManager class, it creates the DriverInfo object to maintain the driver details and
stores these details in a class variable of the java.util. Vector type.

You can register the driver by using any one of the following three approaches:

Invoke the registerDriver () method, which is a static method declared in the DriverManager class, The
java.sql.Driver type of object is passed as an argument to the registerdriver {) method. The following code
snippet shows how to register the Driver object with DriverManager:
. DriverManager. registerDriver (new sun.jdbc.cdbe. 1dbcodbebri ver(}};

Invoke the Class.forName (<driver class name>) method, which is used to load the driver class explicitly.
According to the JDBC specifications, a static code block should be provided in every JDBC driver
implementation class. This code block passes the object of the driver implementation class through the
registerDriver () method. The following code snippet shows how to register the Driver object with
DriverManager by using the Class. forName () method:

Class. forName (“sun. jdbc. odhic. Jdbcodbebriver”); - A

where the sun.jdbc.adbc. 1dbcodbeoriver. class contains the following code:

public: class Jdbcodbepriver extends .. {. - - - oot n. o A

;tat'ic { Driverﬂana_éer.regisj:grbrjve’r_ {new sun.idbc-odbc.3dbcodbebriver()); }

In the preceding code snippet, observe that the result is similar to using the registerDriver () method.

(Note 3

It is recommended to call the newlnstance() method on the Class object, which s retumed by the Class.forName method as
some of the JVMs do not call the static initializers until an instance of the class is created.

O Set the System property, where the name of the property is jdbe.drivers. The value of the System property
can be mapped to one or more driver implementation class names, where *;* character is used as a delimiter.
The following code snippet shows registering the driver with the DriverManager class:
System,setProperty (“jdbc.drivers”, “sun.jdbc.odbesddbeodbooriver”);
Use the above method i our application, or while ekecuting the application using a Java
command, we can set systei ‘properties using the-<D option of java command, example:
Jjava -Djdbc.drivers=sun. jdbe.odbc. Jdbetdbcbiriver MyldbcExl

Note that in the JDBC 4.0 specifications, the getConnecticn () method of the DriverManager class has been
enhanced to support the Java Standard Edition Service Provider mechanism. With this feature, the JDBC 4.0
Driver must include the META-INF/ services/java.sql. Driver file, Therefore, when using JDBC 4.0 driver, you do
not need to perform this step; that is, explicitly registering a Driver with DriverManager.

Establishing a Connection using DriverManager

You can now establish connection with a database after registering the driver with the DriverManager class. To
¢reate a connection, invoke any one of the following methods of the DriverManager class:

O getConnection (String url}
B getConnection (String url, String username, String password)
Q getConnection (String url, Properties info)

488

Working with JOBC 4.0

In the preceding methods, <url> is a]DBC URL, which represents a unique name used to identify the driver and
obtain the connection. The JDBC URL even contains additional information, such as username and password,
required to establish the connection. The syntax of the }DBC URL is as follows:

jdbe: <sub protocol> : <info> .
In the preceding syntax:

¢ Jdbc—Represents the protocol in the JDBC URL
* <sub protocel> —Specifies the vendor specific name of the driver used to create the connection

s <info>—Takes additional information required to establish the connection, such as the database name
and port number, which vary from one driver to another

The following code snippet shows some JDBC URLs:
For Type-l driver, i.e. JDBC-—ODBC Br“ldge Drwer‘ the JDBC URL is:
jdbc: odbcy SuchitaDpsn, o - S
for Oracle Type:-2 dr1ver.. n
string dbName. = "kogent";
String oracleURL = “thc or.

“*"ma @“ * dmame,

//oracieUrL =‘-"3dbc oracleso &,@kagent

For Oracle Type-tz drwer R
string host = “localhos
string dbName = “kag
int port = 1521; - LT T e '
String oracTeURL = “jdbc orade thm @+ host + ":™ + port + ":" + dbName;
//oracleURL = “jdbc:oracte:thin:@i92.168.1.123:1521:xE"™"
When the getConnection() method is invoked, it checks if any one of the drivers registered with the
DriverManager class recognizes the given JDBC URL. If a driver accepts the URL, that driver is used by
DriverManager to establish the connection with the DBMS located by the given JDBC URL. Consequently, if no
driver accepts the URL, the DriverManager class throws the java.sql.5QLException exception to the application.

Creating a JDBC Statement Object

You can execute the SQL statements only after creating the JDBC Statement object. The utility objects available to
execute SQL statements are Statement, PreparedStatement, and CallableStatement.

Invoke the createStatement () method on the current Connection object to create the Statement object. The
following code snippet shows how to create the Statement object using the createstatement (} method:
Statement stmt = connection.createStatement(); -

Executing SQL Statements

After the Statement object is created, it can be used to execute the SQL statements by using the execute(},
executeUpdate(), or executeQuery() methods. The executeQuery() method is only used in the SELECT statement.
For other database operations, such as INSERT, UPDATE, and DELETE, the executeUpdate() method is used to
execute statements. The following code smppet shows how to execute a SQL statement:

J/using executequery()

string query = "SELECT tou co12 col 3 FROM tab?e__name ;

ResultSet results = stmt. executeQuery(query) HE Ve .

//using executeUpdateC) s i

string query= “INSERT ‘into tab‘la__name vaTues (vaTuel va?uez R va’iue n)“

TNt . cowntiEt s tmt. executeupdatelquenyd i i .
If the statement produces a ResultSet object after executing the SQL statements the ResultSet mstance is used to
retrieve the result. The next() method is invoked on the ResultSet object to navigate through a row at a time. The
following code snippet shows the use of the ResultSet ob]ect within a connection:

whi 1»e (resu]ts next())

system,out. pmnﬂn(resn‘tts getstr“mg{l) *:
msu}tskgztsfﬁ {2} :
resuTts.getS
}

489

Chapter 13

Closing the Connection
You need to close the connection and release the session after executing all the required SQL statements and
obtaining the corresponding results. This can be done by calling the close() method of the Connection interface.
The following code snippet shows how to close a connection:
7 connedtion:close()y .o R T T
Now let’s create a simple application to implement JDBC APIs.

Creating a Simple JDBC Application

Let's now learn to create a simple JDBC application that inserts a record in a database table. In our case, we are
inserting the record of a student in the students table of the Oracle data source. To insert the details of a student,
you first need to establish a connection with the database and then execute the insert query.

Figure 13.7 displays how to use JDBC to obtain a connection and communicate with the database:

e me o e e e

-
1
1

Obtaining a

‘ = T i
*Cglectson qm

1
i
1
[}
!
1
]
]
'
1
1

Figure 13.7: Creating and Using Connection
The steps shown in Figure 13.7 describe how to get a connection and execute the SQL statements. The following
are the basic steps to use JDBC to connect to the data store and execute a simple SQL query:
1. Obtain the connection

2. Get the utility objects, such as Statement, PreparedStatement, and CallableStatement, to
execute SQL statements

3. Execute the required SQL statements
4. Close the connection

Now, let's try to understand the concept better by creating a simple application, BasicJDBCExample. In this
application, let’s cerate the JDBCExamplel java file, which demonstrates the basic steps to access a database
using JDBC.

Listing 13.1 shows the code for the JDBCExampleljava file {you can find this file in the
code\ JavaEE\ Chapter13\ BasicJDBCExample folder on the CD):
Listing 13.1: Showing the JDBCExample1 java File

490

Working with JDBC 4.0

- public static void mainCstring args[]). S .
throws i, Cl1assNotFou chept‘ion o
o i bc odbc jdbcodbcorwer H

-Strmg passwor twger L '
string query = "insert into students va]ues (101 \ Kumar\)"
. //Load driver class - - .
CYass.Forname: {dﬂverﬂassﬂam&)v i
-/ f-bbtain i onnection . . -
cannectwp ‘mnml}m \fgrﬂanager ge.‘t;on
il username; password), _
1 ﬁbtain 2 ‘Statement’” T
statement sticon. createStatement().
//Execute the query. .
'inx fountast, executeupdate (query),
system. out: printin: ("Number of rows effected by this query =. "+count),
f/‘ c‘-lf.ssmq the com\eztmn as.our. requirement with connection is -
//completed o _
comclosa
Y/ mainoo
¥/ /etass o

Listing 13.1 shows the uses of JDBC components in a simple application. The application uses the JOBC Type-1
driver {(JDBC-ODBC Bridge Driver) to connect to the database. You must import the java.sqgl package to
provide the basic SQL functionality and use the classes of the package. All the methods used by the application
are wrapped in the java.sql package.

Configuring the Application
You need to configure an application before running it. The following steps need to be performed to configure a
IDBC application:
1. Create a table in a database as per your requirement
2. Configure the data source name of the database to use the JDBCExamplel application to connect to the
database
Let’s learn to perform the preceding steps next.

Creating a Table
The JDBCExamplel application uses a table named students. The students table can be created by using the
CREATE table command. The following code smppet shows how to create the students table ina database

Create table <tabie name> (
‘<column_namels <ty

. create tabae stﬂdgnts (BRSSPI,
stdid number(3), - DEE L
stdname vai’thar‘i(?’ﬂ)}. SEEEENE
Creating a Database Source Name
The code of the JDBCExamplel.java file, given in Listing 13.1, uses the Type-1 (Jdbc-Odbc Bridge Driver) Type-1
driver to connect to the database, which requires a Data Source Name (DSN) to connect to the database.

Perform the following steps to create a DSN in Windows 7:

1. Select Control Panel-»System and Security> Administrative Tools>Data Sources (ODBC) from the Start
menu of your desktop. The ODBC Data Source Administrator dialog box appears, as shown in Figure 13.8:

491

Chapter 13

et

User DSN imosu }

Fie DSN | Divers | Tracin | Connection Pocteg [dbout |

User Data Sources:

Name

Excel Files
MS Access Database

Driver

Microsoft Access dBASE Driver ".dbf, *
Microsoft Excel Driver {* xds, * xisx, “sdem.
Micrasoft Access Driver ("mdb, *accdb)

Visio Database Samples Microsoft Access Driver ("mdb, *acodh)

aa

An ODBC User data source stores information about how to connect to
the indicated data provider. A User data source is only visible to you.
and can only be used on the cument machine.

L gx i

i T B TR T e T e T L e

T o S

Figure 13.8: Displaying

2. Click the Add button to add the data source to which the driver is to be connected.
Source dialog box appears, as shown in Figure 13.9:

the ODBC Data Source Administrator Screen
The Create New Data

&dedadﬁverfcrvdid\ymwaitosetmadata SOLNCE.
! Name (%
Microsoft Excel-Treber " xis) : :
i Microsolt FaxPro VFP Driver (*db) 1
: Microsoft GOBC for Drach N &
; Microsoft Paradox Driver {* db } et f
: Microsoft Paradax-Trebber b } € % i
: Microsoft Text Driver ("t “.csv) ek
;E Microsoft Text-Tretber [“td: *.csv} £ _ §
- 2;:-«&%’?%@@% > %
|
i " yl
: L s] [.Cmed]
L§ T Loa KoY PETET]

T e e L

R i

Figure 13.9;

3. Select the required driver. In our case,
connect to the Oracle database,

4. Click the Finish button (Figure 13.9)
shown in Figure 13.10:

492

rce
we have selected Microsoft ODBC for Oracle, as we want to

to open the Microsoft ODBC for Oracle Setup dialog box, as

Working with JOBC 4.0

KOC;BC Data Sourcc'Administr.atm. S . S

User Data Sources:

w' An ODEC User data source stores information about haw to connedt to
Zi:Ei theindicated data provider. A User data source is only visible to you,
=~ and ¢an only be used on the cument machine.

Figure 13.10: Displaying the Microseft ODBC for Oracle Setup Dialog Box
5. Enter the details in the following fields (Figure 13.10):

¢ Data Source Name —Specifies the name that the application uses within the JDBC URL. In our case, we
have specified XE as the Data Source Name.

* Description—Specifies a brief description about the DSN. This field is optional.
s User Name —Specifies the database user name (optional). In our case, the user name is scott.
® Server—Represents the host String that is required if the oracle database server is installed on a
different computer. In our case, the IP of the server is 192.168.1.123.
6. Click the OK button to create the DSN.

After creating the DSN, you can compile the Java source file by using Command Prompt. To open
Command Prompt, select Start=> All Programs=> Accessories—?Command Prompt. Command Prompt opens,
where you can execute javac command to compile the source file and java command to run the .class file.
Figure 13.11 shows the compilation and execution of the JDBCExamplel java file:

Figure 13.11: Executing the Applicatio
After executing the JDBCExamplel class, a record is updated in the students table of the Oracle database. You
can verify the updation of the record by opening the Run SQL Command Line window and connecting to the
Oracle server.

You should ensure that the Oracle client is installed on your system. In our case, we are using Oracle 10g client
edition. You can open the Run SQL Command Line window by selecting Start>All Programs—>Oracle Client

493

Chapter 13

10g Express Edition-»Run SQL Command Line. The Run SQL Command Line window opens, Now, you should
enter the username and password to log on to the Oracle database server. In our case, we have executed the
following command to log on to the Oracle 10g database:
connect scott/riger@l92.168.1.123

In the preceding command, scott is the username and tiger is the password of the Oracle 10g server. In addition,
192.168.1.123 is the IP address of the machine on which the Oracle 10g server is installed. After executing the
preceding command, you are conmected to the Oracle 10g database. Now, enter the select * from students
command at the Run SQL Command Line prompt. You find that a record has been inserted into the students
table, as shown in Figure 13.12:

NN T T R T

mple in Run

- e

SQL Command Line

Figure 13.12: Showing the Output of BasicJDBCExa
Now let's discuss the PreparedStatement interface in detail.

Working with the PreparedStatement Interface
The PreparedStatement interface, is subclass of the Statement interface, can be used to represent a precompiled
query, which can be executed multiple times. Let’s now first understand the difference between the execution
process of a Statement object and the PreparedStatement object to exeute a JDBC query.

Next, you learn about the setXX() methods and the advantages as well as disadvantages of the
PreparedStatement interface. You also learn how to implement the PreparedStatement interface to execute the
SQL query.

Comparing the Execution Control of the Statement and PreparedStatement

When a Statement object is used to execute a query (that is, calling any one of the execute methods), the query is
processed as follows:

1. The executeXXX() method is invoked on the Statement object by passing the SQL statenent as parameter.
The Statement object submits the SQL statement to the database.

The database compiles the given SQL statement.

An execution plan is prepared by the database to execute the SQL statements.

The execution plan for the compiled SQL statement is then executed. Now, if the SQL statement is a data
retrieval statement, such as the SELECT statement, the database caches the results of the SQL statement in
the buffer.

6. The results are sent to the Statement object.

Ol R W

7. Finally, the response is sent to the Java application in the form of ResultSet.
Figure 13.13 displays the entire execution flow of the Statement object:

494

Working with JDBC 4.0

JVM Database
I Q 3) Compile the given
: 5QL Statement

"e:‘"'u - o 4) Prepare an execution plan

to execute the SQLStatement

5} Execute the comnpiled
SQL Statement’s plan

6) Cache the results into

1
1
i
¥
t
.]
e N buffer {CURSOR)
\& if the SQL Statement is
; Data Retrieval Statement

W Statement
R Chject

Figure 13.13: Displaying the Process Flow of the Statement Object
In Figure 13.13, the st element represents the Statement object reference. Compilation of a query includes syntax
checking, name validation, and pseudo code generation. After a query is validated, the query optimizer prepares
for the execution of the query and then returns what it considers to be the best alternative. The SQL statement
needs to be executed each time it is requested.
It is not necessary to compile the SQL statement and prepare execution plan to execute a statement multiple
times, DBMSs are designed to store the execution plans and execute them multiple times, if required.
Consequently, the processing time of the DBMS is optimized. These stored execution plans of the SQL
statements are known as pre-compiled SQL statements. DBMS intelligently maintains the compiled queries and
provides a unique identity for the prepared execution plan, which the client uses to execute the same query next
time. JDBC specifications support the use of this feature provided by DBMS. The PreparedStatement interface is
designed specificaily to support this feature,
PreparedStatements are pre-compiled; therefore, their execution is much faster as compared to the Statement
objects included in an application. PreparedStatement is a subclass of the Statement interface; therefore, it
inherits all the properties of the Statement interface, The execute methods do not take any parameter while using
the PreparedStatement object.
You should keep in mind the following points while using the PreparedStatement interface:
0 A PreparedStatement object must be associated with one connecton.
L0 A PreparedStatement object represents the execution plan of a query, which is passed as parameter while
creating the PreparedStatement object.
O After the connection on which the PreparedStatement object was created is closed, PreparedStatement is
implicitly closed. '
O When a PreparedStatement object is used to execute a query (that is, calling any one of the execute
methods), the query is processed as follows:
* The prepareStatement() method of the connection object is used to get the object of the
PreparedStatement interface
¢ The connection object submits the given SQL statement to the database
¢ The database compiles the given SQL statement
¢ Anexecution plan is prepared by the database to execute the SQL statements
¢ The database stores the execution plan with a unique [D and returns the identity to the Connection
object
0 The Connection object prepares a PreparedStatement object, initializes it with the execution plan identity,
and returns the reference of the PreparedStatement object to the Java application.

495

Chapter 13

O The setXXX{) methods of the PreparedStatement object are used to set the parameters of the SQL statement
it is representing .

O The executeXXX{) method of the PreparedStatement object is invoked to execute the SQL statement with the
parameters set to the PreparedStatement object

8 The PreparedStatement object delegates the request sent by a client to the database

Q The database locates and executes the execution plan with the given parameters

Q Finaily, the result of the SQL statements is sent to the Java application in the form of ResultSet

Figure 13.14 explains the flow of execution when PreparedStatement is used to execute SQL statements:

JVM Database

-J;:A;;lrea;o; --------------- 3} Compile the given
SQL Statement

@ puoparnstalﬂmom[.".l A 4) Prepare an execution plan

o to execute the SQL Statement

o Returns ps
PreparedSt:

e- ~ | Objectreference

O .oy 12) Locate the execution plan

exocutero | SNl 13) Execute the plan with the

B Statement .
@ resuk B Object given data

5) Store the execution plan
=2 with unique 1D

=

Figure 13.14: Showing Steps Invoived in Using the PreparedStatement Object

In Figure 13.14, the con and ps elements represent the references of the Connection and PreparedStatement
objects, respectively.

Describing the setXXX Methods of the PreparedStatement Interface

You need to set the value of each placeholder (*?°) parameter that is used inside the query string before executing
a PreparedStatement object. The values for these placeholder parameters are provided at runtime to the SQL
queries used within the PreparedStatement object. The values of this parameter can be set by using setXxx ()
methods.

Table 13.20 describes the setXXX() methods of the PreparedStatement interface:

& et : ;

setArray(int i, Array x) Sets the values of parameters to the given array object

setAsciiStream(int parameterindex, Sets the values of the PreparedStatement parameter according to the :

InputStream x, int length) given input stream, specified in the method ¢

4

setBigDecimal({int parameterindex, Sets the values of the parameter by using the values specified in the :

BigDecimal x} java.math.BigDecimal value

setBinaryStream(int parameterIndex, Sets the binary values for the parameters used in the

InputStream x, int length) PreparedStatement object

setBlob(int i, Blob x) Sets an integer value tu the specified Blob object

setBoolean(int parameterlndex, boolean x) Sets the boolean .values for the parameters used in the
PreparedStatement object

496

Working with JDBC 4.0

Table 13 2 Methods ;\vallab!e in the Preparedstatement lnterface

setByte(int parameterIndex, byte x)

: ~ object

Sets the byte values for the parameters used in the PreparedStatement

[RR—

sethtes(mt parameter]nde,\, byte[f x)

Sets the bvte values in an array for the parameterq used in the
Prepdredgtatement abject

setCh1racterStream(1nt parameterindex,
Reader reader, int length)

Sets the character values for the Preparec Statement parameters and
also specifies the length of the characters

¢ parameterlndex DatP x)

e B b BB U b TS e it i b

H setDate(mt parameterlndu, Date x,
. Calendar cal)

setDoublc(lnt parameterlndex dnub le x)

setHoat(mt parameterlndex, fluat x)

setint(int parameterindex, int X)

setLong{int parameterIndex, long x)

¢ Sets the PreparedSta tement parameter w1th a java, sql Da te valut,

b ..,..,A,,..,,.., o cp e

Se{ca an mteger valuu. to the spemfled C]ob ou]ect

Sets the PrepuredStatement parameter w1th a java.sql. Date value and :

alsn uses the Lalendar oblect to set the ‘alue of the parameter

Seh the \alue of the pdnmeter to the Java double waiuc

C»Lh the Valu(. of the parameter to the Java float value

Sets th(. value of the parameter to the Java int value

Sets the value of the parameter to the Java long value

setNull{int parameterindex, int sqlType}

Sets the NULL values for the parameters of the specified sqiType

setNull(int paramIndex, int sq!Type,
String typeName)

setObject{int parameterlndex, Object x)

Sets the NULL values for the parameters of the specified sqlType and 7
typeName

Sets the value of the parameter by using the given object value

setObject{int parameterindex, Object x,
int targetSqlType)

Sets the value of the parameter by using the given object value

setObject(int parameterindex, Object x,
+ int target3qiType, int scale}

setRef(int i, Ref x)

Sets the value of the parameter by using the given object value

Sets the values of the parameters to the REF (<5trucmred type>) value

+ setShort{int parameterindex, short x}

Sets the value of the parameter to the Fava short value

setString{int parameterindex, String x)

1

Sets the value of the parameter to the Java String value

setTime(int parameterIndex, Time x)

Sets the value of the parameter to the java.sql. Time value

setTime(int parameterindex, Time x,
Calendar cal)

Sets the value of the parameter to the java.sql. Time value by using
the calendar object

SR——

setTimestamp(int parameterindex,
Timestamp x)

Sets the value of the parameter to the java.sql.TimeStamp value

setTimestamp(int parameterIndex,
Timestamp x, Calendar cal)

Sets the value of the parameter to the java.sql. TimeStamp value by
using the calendar object

setURL{int parameterIndex, URL x)

Sets the value of the parameter to the java.net. URL value

Advantages and Disadvantages of Using a PreparedStatement Object

The advantages of using a PreparedStatement object are as follows:

Improves the performance of an application as compared to the Statement object that executes the same

query multiple times. The PreparedStatement object performs the execution of queries faster by avoiding

a

the compilation of queries multiple times.
=]

methods.
a

Inserts or updates the SQL 99 data type columns, such as BLOB, CLOB, or OBJECT, with the help of setXXX

Provides a programmatic approach to set the values. In other words, the value of each paramater provided

in 2 SQL query is passed separately by using the PreparedStaternent object, unlike the Statement object.

497

Chapter 13

The main disadvantage of PreparedStatement is that it can represent only one SQL statement at a time, i.e. you
cannot execute more than one statement by a single PreparedStatemnent.

Using the PreparedStatement Interface
The following are some of the situations when you should use PreparedStatement in a JDBC application:
O When a single query is being executed multiple times
O When a query consists of numberous parameters and complex types (SQL 99 types)

PreparedStatements are used to increase the efficiency and reduce the execution time of a query. An instance of
PreparedStatement must be created to execute a precompiled SQL statement. Follow these broad-level steps to
use the PreparedStatement interface:

1. Create a PreparedStatement object

2. Provide the values of the PreparedStatement parameters
3. Execute the SQL statements

Let’s discuss each of these steps in detail.

Creating a PreparedStatement Object
The prepareStatement(String) method of the Connection object is used to create the PreparedStatement object.
The Connection object is used to access the PreparedStatement object, where the query supplied in the
prepareStatement () method can contain zero or more question marks (‘?’, known as parameters). The
values of question mark parameters can be set after the query is compiled.

The followmg code snippet shows how to create the PreparedStatement object in a connection:

In the preceding code smppet the con parameter is the'Connechon object. This ob]ect is used to call the
prepareStatement {) method to obtain the PreparedsStatement object. In the preceding code snippet, ps is
the PreparedStatement object created by using the con object.

Providing the Values of the PreparedStatement Parameters

You need to set the values of the question mark placeholders after creating the PreparedStatement object.
The values of the question marks can be set by using the secXx% () methods. For example, if the question mark
indicates the value of an integer data type, you can use the setInt() method for the particular parameter. If you
have a parameter of the Java string, you can call the setString() method to set the value of the parameter. Note
that these values should be set before prepared statements are executed.

In PreparedStatement, there is a set XXX method for each data type declared in Java. The setXxx method takes
two arguments. The first argument indicates the parameter index and the second argument indicates the value
of the parameter. Note that the parameter index starts from 1.
The following code snippet shows how to set the values of the question mark parameter
ff&’ p2: S@&tw.xﬁm for the parameters: L
| psisetmne 3&3 ST
ps‘setmbfé’st’& dsgsy;
Executrng the SQ! Statements
You can execute the precompiled SQL statements by using the execute(), executeUpdate(), or executeQuery()

methods of the PreparedStatenent interface. The result of these methods is same as that of the respective
methods in the Statement interface.

The followmg code sruppet shows how to execute the SQL statements

498

Working with JDBC 4.0

it n; = ps.executetpdate();. // n is.the, ‘number of rows or tables .
that are being updated

Listing 13.2 demonstrates the use of PreparedStatement inan apphcatmn In Listing 13.2, the PreparedStatement
object is used to execute the INSERT statement (you can find the PreparedStatementExl java file in the
code' JavaEE\ Chapter13\ PreparedStatement folder on the CD):

Listing 13.2: Showing the PreparedStatementEx1.java File
;. package com, kagent,;;dbc,

' f'm;mrt Java sq? i
: */aauthor suchita

‘public c?ass Preparedstatelﬁentex;l“{ '
‘public static void main(string s[1) throws Exception {
~Class, forname(' "oracle: jdbe.driver.graclepriver™). newrnstance{)'

- &gnnection con= DriverManager.getconnaction (
Idhc crac}e hin: @192 158 1.123: 1521 xE“,"scott" “tigar")

ustrmg que«fyn"’msert into mytah‘le vam;es 27T

//Stepl’ Get: PreparedStatement R
' Pmpared&tatmﬂt ps=con ,preparestmment (query}:.

'-j_//Stepz set parameters
: etstring(l,’ :

Llshng 13 2 uses the PreparedStatement object along w1th the connection cbject. The setXXX() methods are used
to set the values of the arguments. The preceding listing sets the values of the integer, string, and double data
types. The executeUpdate() method used in Listing 13.2 retrieves the number of rows affected by executing the
SQL staterment.

The output of Listing 13.2 is shown in Figure 13.15:

Figure 13 15: Displaying the Output of the PreparedStatementEx1 .java File

499

Chapter 13

After learning about the PreparedStatement interface, let’s now proceed to learn about the CallableStaternent
interface.

Working with the CaflableStatement Interface

The CallableStatement interface extends the Preparedstatement interface and also provides support for both
mput as well as output parameters. The CallableStatement interface provides a standard abstraction for all the
data sources to call stored procedures and functions, irrespective of the vendor of the data source. This interface
is used to access, invoke, and retrieve the results of SQL stored procedures, functions, and cursors. Stored
procedures let you write queries that are quick to run and easy to invoke. It is often easier to update an
application by altering or making a few changes in the stored procedures. Functions are similar to procedures;
however, the major difference between a function and procedure is that a function always returns a scalar value.
You can also use cursors with CallableStatement to retrieve a ResuliSet from a database.

Let’s now demonstrate the use of CallableStatement with stored procedures, functions, and cursors.

Describing Stored Procedures
A stored procedure is a subroutine used by applications fo access data from a database. Stored procedures are
callead by using the CallableStatement interface in Java. The procedures called by the CallableStatement object
are the database programs that contain the database interface. A stored procedure has the following properties:
O Contains input, cutput, or both these parameters
O Returns a value through the QUT parameter after executing the SQL statements
O Returns multiple ResultSets when required

Stored procedures are generally a group of SQL statements that allows you to make a single call to a database.
The SQL statements in a stored procedure are executed statically for better performance. A stored procedure
encapsulates the values of the following types of parameters:

G IN—Refers to the parameter whose value cannot be overwritten and referenced by a stored procedure

O OUT-—Refers to the parameter whose value can be overwritten; however, cannot be referenced by a stored
procedure

0O IN OUT —Refers to the parameter whose value can be overwritten and referenced by the stored procedure

The following code snippet shows how to create or replace a stored procedure

Create or [Replace] Procedure precedur‘e name .
: {(parameter [, parameterl)] .
Is
[Dec'lar;t'ibns] BEGIN
. éxdcurables)
[EXCEPTION exceptions]
END [Procedure_name]

Using the CallableStatement Interface

In Java, the CallableStatement interface is used to call the stored procedures and functons, Therefore, the
stored procedure can be called by using an object of the CallableStatement interface. The broad-level steps
to use the CallableStatement interface in an application are:

Creating the CallableStaternent object
Setting the values of the parameters
Registering the OUT parameters type
Executing the procedure or function

U W e

Retrieving the parameter values
Let’s discuss these in details: .

500

Working with JDBG 4.0

Creating the CallableStatement Object
The first step to use the CallableStatement interface is to create the CallableStatement object. The
CallableStatement object can be created by invoking the prepareCall (String) method of the Connection object.
The syntax to call the prepareCa]l method in an application is:

¢ - *)} // ca’l’[mg the prepareCaTl

1 procedure name}// with no ;iar'ameter-
Setting the Values of the Parameters
You need to set the values of the IN and IN OUT type parameters in the stored procedure after creating the
CallableStatement object. The values of these parameters can be set by calling the setXXX() method of the
CallableStatement interface. The setXXX() method is used to pass the values to the IN, QUT, and IN QUT
parameters. The values for a parameter can be set by using the following syntax:
SeTXCIAt Tnder, 000 value) -

Registering the OUT Parameters Type
The OUT or IN OUT parameter used in a procedure represented by CallableStatement must be registered to
collect the values of the parameters after the stored procedure is executed. You can register the parameters by
invoking the registerOutParameter() method of the CallableStatement interface. This method defines the type of
parameter used in the CallableStatements intetface. The parameters can be registered by using the following
syntax:
regi sterti

EaE N Toadex Rt Lype):
Executing the Pmcedum or Furction

After registering the OUT parameter type, you need to execute the procedure. The execute{) method of the
CallableStatement interface is used to execute the procedure and does not take any argument.

Retrieving the Parameter Values
You need to retrieve the OUT or IN OUT type parameter values of the stored procedure after executing the
stored procedure. You can use the getxxx{) method of the CallableStatement interface to retrieve the
parameter values of the procedure.)
After you have retrieved the results, repeat the steps if you want to execute the same procedure again with
different parameter values. After performing all lasks associated with the database connection, it is a good
practice to invoke the close () method on the CallableStatement object.

An Example of Using the CallableStatement Interface

As learned earlier, you can use the CallableStatement interface to execute a stored procedure with the IN and
OUT parameters. In this section, you first learn to implement the CallableStatement interface to execute a stored
procedure that accepts the IN parameters. In other words, we create the create Account stored procedure that
needs IN parameters for execution, which are provided by using the CallableStatement interface in an
application.

Later, the CallableStatement interface is used with the OUT parameter. In other words, the getBalance stored
procedure is created, which provides the balance of an account holder as the output to the application invoking
the stored procedure.

Executing a Stored Procedure with the IN Parameter
Let’s now create an application to call a stored procedure using the CallableStatement interface. You can find
this application on the CD in the code\Java®E\Chapterl3\callablestatement folder.

First, create two tables called bank and personal details. In addition, create a procedure named
createAccount by usmg SQL quenes, as shown in the followmg code smppet

501

Chapter 13

,,J;lguypa number

Cré a}ﬂg pe sona] detai’!s <

“Ateno iumber

addrass varcharzczm, e
mr

The precedmg code smppet shows that the createAccount procedure can be used to ingert data into database
tables.
The following code snippet shows the SQL query to create the createAccount procedure:

..replgee pmeeﬂwe cmzmauntz'cacmm' hupher, - actype- number,

In the préceding code snippet, the values in the bank and personal_details tables are inserted by using the
createAccount procedure.

Figure 13.16 shows the output of executlng the preceding code snippets at the Run SQL Command Line prompt:

Figure 13.16: Showing the Creation of Table and Stored Procedura

The tables and procedures created in the Oracle 10g database, as shown in Figure 13.16, are used in Listing 13.3
to call the createAccount stored procedure by using CallableStatement. You can see the use of the IN parameter
in Listing 13.3. The commented line (//Step2: set IN parameters) in Listing 13.3 shows the use of the IN
parameter to work with CallableStatement (you can find the CallableStatementExl.java file in the
code\ JavaEE\ Chapter13\ callablestatement folder on the CD}):

Working with JDBC 4.0

Listing 13.3: Showing the Code for the CallableStatementEx1.java File

&7h

S :
3 is shown in Figure 13.17:

Figure 13.17: Showing the Output of CallableStatementEx1.java
If CallableStatement uses the QUT parameter to work with the stored procedure, you need to register the OUT
parameter using the registerQutParameter (} method of the CallableStatement interface.
Executing a Stored Procedure with the OUT Parameter

In this section, let's create an application that calls a stored procedure named getBalance{() by using the
CallableStatement interface. First, create a procedure named getBalance(}, as shown in the following code
snippet: 5

In th
SQL query.
Figure 13.18 shows the getBalance procedure created by using the SQL editor:

503

Chapter 13

R TG

Figure 13.18: Creating a Procedure

by Using the OUT Paramete

Let’s now see how to execute the getBalance stored procedure with the OUT parameter of CallableStaternent.
Listing 134 shows the use of the OUT parameter with the stored procedure (vou can find the
CallableStatementEx2.Java file in the code\ JavaEE\ Chapter13\ callablestatement folder on the CD):

Listing 13.4: Showing the Code for the CallableStatementEx2.Java File
package com.kogent.jdbc; -) T e
import java.sql.*; .0 oo e

¥ & L

* gauthor Suchita

public ‘class Callablestatementéxd §
public static void main(String s{1)

il Cwindo

2 e

Figure 13.19: Showing the Output of CallableStatementEx2 by Using the OUT Parameter
In the next subsection, let’s discuss how to call functions using CallableStatements.

Calling Functions using CallableStatements

Most of the databases provide support for the numeric, string, time, date, system, and conversion functions.
These functions are used in SQL statements to return scalar values stored in a database. The scalar functions

504

Working with JOBC 4.0

supported by a DBMS must also be supported by the database drivers used in the application. The user can
access these functions by calling the metadata methods.

Table 13.21 describes the scalar function types supported by Oracle:

Numeric Functions

Table 13.21: Scalar Functions and their Uses

Operate on numeric data types, such as greatest{) least() round(), rrunc(length(), and

lower()

b
: String Functions

Operate on the string data types, such as Char(), ctmcat() inqert() and length()

Time & Date Functions

Access all the tlme and daie related information from a database ¥

System functions

Retrieve the information about the DBMSs used in an application

Conversion Functions

Convert the data type of a given value into the required type ’ i

In addition to these pre-defined functions, DBMS has a feature to create user-defined functions. User-defined
functions can be used within Data Manipulation Language (DML) queries; however, it is not recommended to
use DML queries within a function. The user-defined functions can be used in the following situations:
Q0 Inthe column names of a SELECT statement
0O In the WHERE clause as a condition
QO Inthe value clause of an INSERT statement
O Inthe SET clause of an UPDATE statement
The following syntax shows how to create a user-defined function:
-Creata [OR Replace] FUNCTION fuﬂcﬁ oaname [‘(par’ameter [. parameter})]

- RETURN return_datatype

15../4.\5 .
{Dedar
-~ BEGIN .’

'eXEE_ }

The procedure to call a function in an apphééhén is the same as that of procedures » The 5 syntax to uwoke a
function in]DBC (String argument of the prepareCall method) is as follows

Listing 13.5 shows the 1 use of a user—defmed function in an appl:catlon by usmg CallabieStatement (you can find
the CallableStatementEx3.java file in the code\ JavaEE\ Chapter13\ callablestatement folder on the CD}):

Llstmg 13.5: Showing the Code for the CallableStatementExB j ava File
’MCMQB GO kﬂmts‘ddbm = ;

mport jav&.sq] *' :
* t ja it

Fac]]dbc driver oracTeDmver o y _
“pdanéw oracle.jdbe driver.oraclepriver();
Conmection con=od.connect (“jdbrioracle:thin:@192.168.1.123; 1521 XE",p),

505

Chapter 13

“Caltlablestatement cs=con. preparecaﬂ M iealt -2
cs.registeroutParameter (1, Types.DOUBLE}:
‘~cs setInt(2,Integer. par!sernt(s[()])), S

T

sgsm;r out ;rr'inﬂn(cs.gamoub?e(l}}.

Llstmg 13 5 executes a user-dehned funcnon, getBalanceF () : by using the CallableSta‘tement object, Wthh is

used to access the function from the Oracle database. The desired output of the function is then displayed to
the user.

Figure 13.20 shows the creation of the getBalancerf (} function in the appllcanon

Figure 13.20: Creating a User-Defined Function
Figure 13.21 displays the output of CallableStatementEx3:

Figure 13 21 Showlng Output of CallabIeStatementEx3 by Using Functlon

All the features discussed so far are used to retrieve a single record from a database. You can use a cursor to
retrieve a ResultSet containing multiple records from the database. Let’s discuss about the use of cursors in
CallableStatements to retrieve the ResultSet object.

Using Cursors in CallableStatements
A cursor allows you to iterate through the rows in a ResultSet. In other words, a cursor defines the run time
execution environment for a query. You can open the cursor to execute the queries in that environment and read
the output of the query from the cursor.
The syntax to create a cursor is shown in the following code snippet:

cnem;e rreplace package package,.name XS,
, ,m IS REF cmtsm S

Cursors are used to retneve ResultSet from a database through CalIableStatement Llstmg 13.6 shows the use of
cursors to get the ResultSet object to access multiple records from a database (you can find the
CallableStatementEx4.java file in the code\ JavaEE\ Chapter13\ callablestatement folder on the CD}:

506

Working with JOBC 4.0

Listing 13.6: Showing the Code for the CalEableStatementExti java File
mkm-c»om kogent Jdbc S

455 Ca .agﬂes a;mntﬁx4
id main(strin is‘-f]) throws Exceptwn {

roper =t
@e,w-ﬁz(’%ser. SPSCORE™Y)
«put("password” S riger'), .
oracte; jdbe. ﬂr‘:ver Graciebriver :
‘Dd=new-oracle. jdbc.driver. orac‘leorwér{),

Tablestatement cs=)
preparecali{"{calt 7: +getAccauntDeta11s(’?)}"), RE
iregistévoiutraraneter(l; ‘oracie. jdbc. Oracle'rypes CURSOR}.»
;1_:5 mzm:(z I:nteger parsefnt(s[0])); i
‘cscexecute(); 4 o
‘ResuTtser’ rs={nesa1t5et) cs.getobject(1); ’ ‘
véﬁﬂe (f's next(3¥{ , T
: system.out . print(rs.getInt(1)+"\t"); AT T
iSysnem.out. print{rs. gerstring(2)+"\t");

Syseem Ot prmt'[n(rs getbouble(3)); W

; f?ﬁ3ﬁ$s
all the accounts of the given account_type.
Figure 13.22 dlsplays the creation of the cursor and functions assoctated with Listing 13.6:

Figure 13.23: Showing the Output of the CallablaStatementEx4java File

‘Cotnection: conmot. connect("gdb;; oracie: thin:6102.168.1. 1;23 1521 XE",p). :

Llstmg 13.6 uses the cursors and functlons in the Oracle 10g database to access the ResultSet object representmg

507

E?hapter 13

Working with ResultSets

A ResultSet is an interface provided in the java.sgl package, and is used to represent data retrieved from a
database in a tabular format. It implies that a ResultSet object is a table of data returned by executing a SQL
query. A ResultSet object encapsulates the resultant tabular data obtained when a query is executed. A ResultSet
object holds zero or more objects, where each of the objects represents one row that may span over one or more
table columns. You can obtain a ResultSet object by using the executeQuery or getResultSet method of a
statement. Some of the important points related to a ResultSet are as follows:

Q ResultSets follow the iterate pattern.
O A ResultSet object is associated with a statement within a connection.

@ You can obtain any number of ResultSets using one statement; however, only one ResultSet can be opened
at a time. When you try to open a ResultSet using a statement that is already associated with an opened
ResultSet, the existing ResultSet is implicitly closed.

O ResultSetis automatically closed when its associated statement is closed.

Describing the Methods of ResultSets

The java.sqgl.ResultSet interface provides certain methods to work with ResultSet objects. The methods
available in the ResultSet interface are used to move the cursor throughout the ResultSet and read the data.

Table 13.22 describes some of the most commonly used methods in the ResultSet interface:
Table 13.22: Methods of the java.sql.ResultSet Interface

B

i absolute(int row) Moves the cursor to the specified row in the ResultSet object. ‘
afterLast() Places the cursor just after the last row in the ResultSet object.
beforeFirst() ‘ Places the cursor before the first row in the ResultSet object.
cancelRowUpdates() Cancels all the changes made to the rows in the ResultSet object.
clearWarnings(} Clears all warning messages on a ResultSet object.
close() Closes the ResultSet object and releases all the JDBC resources
connected to it.

deleteRow() Deletes the specified row from the ResultSet object and the
database.

firsk() Moves the cursor to the first row in the ResultSet. object,
Retrieves the value of the specified column from the ResultSet

getArray() .
object.

getAsciiStream() Retrieves a specified column in the current row as a stream of
ASCII characters.

getXXX() Retrieves the column values of the specified types from the
current row. The type can be any of the Java predefined data
types, such as int, long, byte, character, string, double, or large
object types.

getDate(} Retrieves the specified column from the current row in the
ResultSet object. The object retrieved is of the java.sql.Date
type in the Java programming language.

getDate(String columnName, Calendar cal) Retrieves the specified column from the current row in the
ResultSet object. The object retrieved is of the java. sql.Date
type.

getFetchDirection() Specifies the direction {forward or reverse) in which the ResultSet
object retrieves the row from a database.

getFetchSize() Retrieves the size of the associated ResultSet object.

508

Working with JDB(C 4.0

Table 13.22: Methods of the java.sql.ResultSet Interface

getMetaData()

Retrieves the number, type, and properties of the ResultSet object.

getObject(int columnIndex)

Retrieves a specified column in the current row as an object in the
Java programming language on the basis of the column index
value passed as a parameter.

getObject(int i, Map map)

Retrieves a specified column as an object on the basis of the
column number and Map instance passed as parameters.

getObject(String columnName)

Retrieves a specified column in the current row as an object on the
basis of the column name passed as a parameter.

getObject(String colName, Map map)

Retrieves a specified column in the current row as an object on the
basis of the column name and Map instance passed as paramneters.

getRow() Retrieves the current row number associated with the ResultSet
object.

getStatement() Retrieves the Statement object associated with the ResultSet
object.

getTime{int columnindex) Retrieves the column values as a java.sql.Time object on the

basis of column index passed as an integer parameter,

getTime(int columnIndex, Calendar cal)

Retrieves the column values as a java.sgl.Time object on the
basis of column index as well as the cal object of the Calender
class passed as parameters.

getTime(String columnName)

Retrieves the column values as a java.sql.Time object on the
basis of column name passed as a String value.

getTime(String columnName, Calendar cal}

Retrieves the column values as a java.sgl.Time object on the
basis of String value of column name as well Calender object cal
as parameters.

getTimestamp(int columnindex)

Retrieves the column values as a java.sql.Timestamp object
on the basis of the column index passed as a parameter.

getTimestamp(int columnIndex, Calendar cal)

Retrieves the column values as a java.sql.Timestamp object
on the basis of the column index and the cal object of the Calendar
class passed as parameters.

getTimestamp(String columnName)

Retrieves the column values as a java.sql.Timestamp object
on the basis of the column name passed as a parameter.

getTimestamp(Siring columnName, Calendar cal)

Retrieves the column values as a java.sql.Timestamp object
on the basis of the column name and the cal object of the Calendar
class passed as arguments.

getType(} Retrieves the type of the ResultSet object used in a connection.

getWarnings() Retrieves the warning reported on the ResultSet object.

insertRow () Inserts the specified row and content into the ResultSet object and
database.

isAfterLast() Specifies whether the cursor of the ResultSet object is at the end of
the last row.

isBeforeFirst() Specifies whether the cursor is before the first row in the ResultSet
object or not.

isFirst() Specifies whether the cursor is on the first row or not.

isLast() Detects whether the cursor is on the last row of the ResultSet

object or not,

Chapter 13

Table 13.22: Methods of the java.sql.ResultSet Interface

last() : Moves the cursor to the first row in the ResultSet object. The
method returns true if the cursor is positioned on the first row,
and false if the ResultSet object does not contain any rows.

moveToCurrentRow() Moves the cursor to the current row in the ResultSet object.
moveTolnsertRow() Moves the cursor to the inserted row in the ResultSet object.
next() Moves the cursor forward one row. The method returns true if the

cursor is positioned on a row and false if the cursor is positioned
after the last row.

previous() Moves the cursor backward one row. The method returns true if
the cursor is positioned on a row and false if the cursor is
positioned before the first row.

refreshRow() Refreshes the current row associated with the ResultSet object
with the recent updates.

relative(int rows) Moves the cursor to a relative number of rows or columns
specified in the method.

rowDeleted() Retrieves whether the row has already been deleted or not.

rowinserted() Determines whether the current row has an insertion or not.

rowUpdated() Retrieves whether the current row has been updated or not.

setFetchDirection(int direction) Sets the direction of the ResultSet object.

setFetchSize(int rows)} Sets the size of the ResultSet object.

updateArray() Updates the column in the ResuitSet object with a

java.sgl.Array value.

updateXXX() Updates the column values of the current row of the specified
type. The type can be any of the Java predefined data types, such
as int, long, byte, character, string, double, and the large object

types.
updateRow() Updates the current row with new content.
wasNull(} Reports whether the last column has a SQL null value or not.
updateNull{String columnName) Updates a specific column with a NULL value.
updateObject(int columnIndex, Object x} Updates the specific column with an Object value.
updateTime(int columnindex, Time x) Updates the time value with a java. sql. Time value.
updateTimestamp(int columnindex, Timestamp x) Updates the time value with a java.sql . Timestamg value.
getConcurrency() Retrieves the concurrency mode of the ResultSet object.
getCursorName() Retrieves the SQL cursor name used by the ResultSet object.

Using ResultSets

After obtaining a ResultSet object, you can use a Resultset to read the data (ResultSet content) encapsulated in it.
Figure 13.24 shows the process flow involved in getting ResultSet from the Statement object and reading the data
from the ResultSet object. The st and rs parameters represent the Statement and ResultSet object references,
respectively.

Figure 13.24 shows the ResultSet operations:

510

Working with JOBC 4.0

Database

3) Compile & Execute the
given SQL Query

4) Cache the results into
buffer (CURSOR)

Figure 13.24: Expiaining the ResultSet Operations

Note that for every next() method invoked, the JDBC driver may not necessarily get the data row from the
database buffer. This means that after every step 8, shown in Figure 13.24, there may not always be a step 9.
Instead, the JDBC driver can get multiple rows of data at a time and buffer it on the client side. The buffering of
data on the client size depends on the fetch size set for the ResultSet object. The fetch size of a ResultSet can be
set by using the setFetchSize (int) method of ResultSet.

You can retrieve data from a ResultSet in two simple steps:
O Move the cursor position to the required row

O Read the column data using the getXXX methods
Let’s discuss these steps in detail.

Moving the Cursor Position
While obtaining data from a ResultSet, the cursor is initially placed before the first row, i.e. beforeFirst(). You can
use the next() method of ResultSet to move the cursor position to the next record in the ResultSet. When the
cursor is moved to the next record, it returns a boolean value indicating whether or not any record is available in
the ResultSet. The next(} method returns true if it successfully positions the cursor on the next row; otherwise, it
returns false.

JDBC 2.0 also introduces some other methods in ResultSet fo move the cursor position, provided the ResultSet is of the
scrollable type. The ResultSet generated is forward by default: therefore, you can iterate through it only in the forward direction
from the first to the last row.

Reading the Column Values

After moving the cursor to the respective row, you can use the getter methods of ResultSet to retrieve the data
from the row where the cursor is positioned. Getter methods of ResultSet are overloaded, that means, there are
two getter methods for each of the JDBC type. One of these two methods takes column index of type int as an
input, where column index starts with 1; and the other method takes column name of the String type. You
should note that the column names that are passed to getter methods are not case sensitive. If the same column is
present more than once in a select list, the first instance of the column is to be returned.

Note that the column index supplied to the getXXX methods is the index that starts with 1, where the index
numbers are given based on the resulted tabular data, and not on the source table that is queried.

For example, suppose a table of studernts contains two columns, stdid, and stdName. Now, if you obtain a
ResultSet for the select stdName, and stdid from the students query, the column index 1 locates
the stdName; whereas, index 2 locates stdid. The ResultSet interface has the getXXX method for all the basic and
predefined complex types.

511

Chapter 13

When the getter methods of ResultSet are invoked, the JDBC driver attempts to convert the requested column
value into the respective Java type and returns the Java value. However, if it fails to convert the column value
into its respective Java type, it throws the SQLException exception and describes it as a conversion error,

Figure 13.25 shows the exceptions thrown for the Oracle Thin driver:

Figure 13.25: Showing an Example of SQLException

Figure 13.25 shows the error message when the JDBC driver fails to convert the SQL type to the Java type. In
our case, we have created the GetData java file in which the column value is of String type and we have used
getInt(} method to retrieve the colum value. The allowable mappings for the various SQL Types to Java types
under the JDBC specification are described in Table 13.23:

Table 13.23: JDBC and Java Data Types

CHAR

String
VARCHAR String
LONGVARCHAR String
NUMERIC Java.math.BigDecimal
DECIMAL Java.math.BigDecimal
BIT boolean
BOOLEAN boolean
TINYINT byte
SMALLINT short
INTEGER int

In Java, the value of a calumn can be retrieved in the form of an object in a ResultSet by using the getObject()
method.

The getObject() method of ResultSet uses the conversions as described in Table 13.24:
Table 13.24: Showing the Conversion of JDBC to Java Object Ty

CHAR String

VARCHAR String
LONGVARCHAR ' String

NUMERIC java.math.BigDecimal
DECIMAL java.math, BigDecimal
BIT boolean

BOOLEAN boolean

512

Working with JDBC 4.0

Table 13.24: Showing the Conversion of JDBC to Java Object Type

TINYINT Integer

SMALLINT Integer

INTEGER Integer

BIGINT Long

REAL Float

FLOAT Double

DOUBLE Doubie

BINARY byte]]

VARBINARY byte[]
LONGVARBINARY byte[]

DATE java.sql.Date

TIME java.sql.Time
TIMESTAMP java.sgl.Timestamp
DISTINCT Object type of underlying Type
CLOB java.sql.Clob

BLOB java.sql.Blob

ARRAY java.sql.Array
STRUCT java.sql.Struct or java.sql.SQLData
REF java.sql.Ref
DATALINK java.net, URL
Java_OBJECT Underlying Java class
ROWID java.sql.Rowld
NCHAR String

NVARCHAR String
LONGNVARCHAR String

Let’s now look at some examples of using ResuitSet.

Retrieving All the Rows in a Table
As already explained, you can retrieve rows from a table by using the ResultSet object. Let’s now understand
how you can retrieve all the rows of the mytable table. A row in the mytable table can store data of different
types, such as a string, integer, and floating-point number.

Listing 13.7 shows how you can retrieve all the rows from the mytable table (you can find the GetAliRows.java
file in the code\JavaEE\ Chapter13\ Resultset folder on the CD);
Listing 13.7: Showing the Code for the GetAllRows.java File

o

) “‘. %, ox ¥
513

Chapter 13

throws an exception if the user tries to move the cursor in the backward direction from the relative position of
the cursor.

NoT

The column names used with the get)(XX methods of ResultSet are not the actual table column names; instead, they are the
column names of the table that would be created as a ResultSet. For instance, if you use a query fo select colt as c¢1, col2 as
¢2, and col3 as ¢3 from the mytabie table, the column names that you need to use in these getXXX methods are ¢1, c2 and ¢3
and not col1, col2 and cof3.

In Listing 13.7, we have obtained the data by using column names. However, we can also obtain the data by
using column numbers. Use the following code snippet in place of the code with column names (as shown in

Listing 13.7) to obtain the data using column numbers:

£

Using the column index form of the getXOXX() methods is more efficient than the column name form, because the driver does not
have to deal with the extra steps of parsing the column name, finding it in the select list, and then tumning it into a humber.

Compiling and running the application shown in Listing 13.7 gives the output, as shown in Figure 13.26:

514

Working with JDBC 4.0

Figure 13.26: Showing the Output of GetAliIRows.java
If we try to read the column values (without calling the next () method on ResultSet) obtained after
executing the query, an exception is raised, as shown in Figure 13.27:

Figure 13.27: Showing the Qutput Without Calting the next{) Method
We have created the GetDatajava file in which the next() method on the ResultSet instance is not invoked;
therefore, the SQLException exception is generated, as shown in Figure 13.27. If you see an exception as shown
in Figure 13.27, it implies that you have attempted to read the data from the ResultSet immediately after
obtaining it, without first cailing the next{) method. Note that even if you retrieve only one record (that is, one
row), you still need to call the next row before reading column values. In such a case, the rs.next () method is
used.

If you attempt to retrieve/read the column values even after the last record, the SQLException exception is
raised. For example, if in Listing 13.7, you try to call the getXXX method after the while loop, an exception is
raised as shown in Figure 13.28: '

Figure 13.28: Showing the Output of GetAliRows.Java Accessing ResultSet after Last Record

Therefore, if the SQLException exception is raised, you must check the control of your application to ensure that
it does not read the data when the position of the ResultSet cursor is after the last record.

Retrieving a Particular Column Using ResultSet

Apart from retrieving all the columns from a table, you can also retrieve data of a particular column from the
ResultSet. Listing 13.8 shows how to retrieve data of the coll and col2 columns from the mytable table (you can
find the GetData java file in the code\ JavaEE\ Chapter13\ Resultset folder on the CD):

515

Chapter 13

Listing 13.8: Showing the Code for the GetData.java File

o g BEE 7

j;{jm:* m:;’é?%;g% e *;

S

¥ e B g5 .
In Listing 13.8, the SELECT statement is used to retrieve the data of the coll and col3 columns from the mytable

table, and the next () method is used to move the cursor position in the forward direction.
The output of Listing 13.8 is shown in Figure 13.29:

Figure 13.29: Showing the Output of GetData
516

Working with JDBC 4.0

You can change the query in Listing 13.8, as shown in the following code snippet:

Now, in the getXXX methods of ResultSet, you pass c1 and c3 instead of COL1 and COLB, resp;acti'v';ely', as siqowﬁ
in the following code snippet:
. System.out.print_(rs.gexString ("c1™) + "\t");

Cgvsten.put.printin (rs.géfInefic3m)yy o B ’
The following code snippet shows the internal 1mplementat10n of column name version of the getXXX method in
a Resu]tSet

pubfhd Soring. getstring(String s){ Pl ' Do o

int; indén=FfindcoTumn(s); ' I T

mm m;‘»triwg{mdex},r- et R Tl el S

gt : i
In the precedmg code smppet the findColumn{s) method of ResultSet returns the mdex number of the first
found column, where the column name matches with the specitfied string column name.

The following are the possible exceptions that might be raised while executing this application:

O ClassNotFoundException, as shown in Listing 13.8.

0 SQLException, if the column names used in the SQL query are not correct, as shown in Figure 13.30:

Figure 13.30: Showmg the SQLException when Column Name is lncorrect
In this case, verify that the column names used in the query are correct.
0 The SQLException exception can be raised if the column types used with the getXXX methods of ResultSet
are incorrect.

Figure 13.31 shows the SQLException exception that is raised while executing the GetData class, in which the
value of a field is not internally converted into int:

Flgure 13.31: Showlng the SQLExceptlon with lncorrect GetXXX() Method

517

Chapter 13

If the exception shown in Figure 13.31 is raised, you should check the column names used with the getXXX
methods of ResultSet. Note that the preceding two exceptions are different, and to programmatically
differentiate these exceptions and write supplementary code snippets, you need to depend on the SQL State and
Error Code, which are vendor dependent. For example, if you observe the exception message shown in Figure
13.30, you find the exception message as ORA-00904. In this exception message, 00904 represents the error code.
You use the getErrorCode() method of SQLException to obtain only the exception (error) code in an application,
O Instead of using column names with the getXXX methods of ResultSet, you can use column index.
However, if improper column index is used, you can encounter the same exception as shown in Figure
13.31. In this case, verify that the column indexes used with the getXXX methods are correct,
You can use the preceding example to create a query for particular rows. In this case, you need to change the
query, as shown in the following code snippet:

string: select * From mytable wherd: CoLls’

<l string query= "select * fi
Working with Batch Updates
The batch update option allows you to submit multiple DDL/DML operations to a data source to process data
simultaneously. Submitting multiple DDL/DML queries together, rather than submitting them individually,
improves the performance of the query execution time. The Statement, PreparedStatement, and
CallableStatement objects can be used to submit batch updates. It implies that the Statement,
PreparedStatement, and CallableStatement objects are capable of keeping track of batches to be
processed so that all the batches can be submitted together for processing. This feature has been introduced in
the JDBC 2.0 specifications.

Using Batch Updates with the Statement Object

Using the batch updates option with the Statement object allows you to submit a set of heterogeneous
DDL/DML commands as a single unit (batch) to the underlying data source. When the Statement object is
created using the createStatement () method of the Connection interface, it is associated with an empty
batch. An application can use the addBatch (String) method to add a statement to the batch. After all the
statements have been added to the batch, the application can invoke the executeBatch () methed, if the batch
needs to be submitted for processing. However, if the application does not submit the batch, it can invoke the
clearBatch () method on the Statement object to remove all the statements.

Describing the Batch Update Methods
The following methods have been added in the Statement interface to support batch update:

O addBatch {String) — Adds one SQL statement to a batch, Only DDL and DML commands that return a
simple update count can be added to the batch.

Q int [] executeBatch() —Submits a batch to the underlying data source. When the batch is submitted to the
data source, the statements in a batch are executed in the sequence in which they have been added to the
batch.

O clearBatch() — Clears the batch before submitting it for processingIf the batch is executed successfully, the
executeBatch() method returns an array of integer whose length is equal to the number of statements in the
batch, and each element in the batch represents the respective statements update count. If the value of any
element in this array is equal to Statement SUCCESS_NO_INFO, it indicates that the statement has been
executed successfully but the number of rows affected is unknown. In case a statement in a batch fails to be
executed and produces a result set, further processing of the batch depends on the JDBC driver. In this case,
the JDBC driver may still continue executing the batch or may terminate it. However, in most cases, the
JDBC driver terminates the batch processing. Irrespective of the fact that the driver is implemented or not, if
the batch fails to execute, the executeBatch() method throws BatchUpdateException. After the
executeBatch() method is executed, the JDBC driver resets the batch.

518

Working with JOBC 4.0

Q The java.sql.BatchUpdateException — Refers to an exception that is raised if the batch fails to execute. [t isa
subclass of java.sqgl.SQLException, which uses the getUpdateCounts () method of the current
object and returns the int array, whose value can be:

¢ Less than the size of the batch — Denotes that the driver has terminated the batch after the first failure
of the execution of a query. Therefore, if the length of an array is n, it means that the first n statements in
the batch have been executed successfully.

+ Equal to the size of the batch— Denotes that the driver has continued the batch execution process even
after the batch has failed to execute. In this case, the value of each element in the array specifies the
update count. If the array value pertains to the statement that has failed to execute, the array value
becomes equal to the Statement. . EXECUTE_FAILED field.

Example of Using Batch Updates with the Statement Object
Let’s now look at an example of using batch updates with the Statement object. Let’s create an application,
called BatchUpdate, containing the BatchUpdateExl.java file, which is used to perform batch updates.
Listing 13.9 shows the code for the BatchUpdateExl. java file {you can find the BatchUpdateEx1 java file in
the code\ JavaEE\ Chapter13\ BatchUpdate folder on the CD:

Listing 13.9: Showing the Code for the BatchUpdateExl java Flle
. packagé: cﬁymgﬁe“" i W
import java sq7.
import java. ut;ﬂ
imt Jawa'wi*-uj L

ystenr, s
fint{} cmntm ‘_ Ehpdate : :
n-‘gr%%i a&ts Tengtﬁﬁ#}‘ L T PTG M L A
: _‘,pm&ﬁmmaﬁmm.efm;m@‘ ,m‘

Chapter 13

Listing 13.9 demonstrates how to perform batch updates using the Statement object. It also shows that the
SQL statemnents added to the batch are executed in the order in which they have been added to the batch. In
addition, it shows how to get update counts by using BatchUpadateException.

Figure 13.32 shows the output of Listing 13.9:

Figure 13.32: Showing the Output of BatchUpdateEx1.java
Figure 13.32 shows the successful execution of the batch used in Listing 13.9. You can run the preceding example
again with argument value 203 to understand how the BatchUpdateException exception functions, as shown
in Figure 13.33:

Figure 13.33: Showing the Output of BatchUpdateEx1.Java with a Different Parameter
In Figure 13.33, a message specifying the termination of the batch execution is displayed as you try to insert a

record with empno 203, which already exists (empno column of emp table is set with primary key constraint} in
the database.

After leamning to use batch updates with the Statement object, let's now learn how to implement batch
updates using the PreparedStatement object.

Using Batch Updates with the PreparedStatement Object

Using the batch updates feature with the PreparedStatement object is a bit different as compared to the
Statement object. You can relate various input parameter values to a PreparedStatement object by using batch
updates. The PreparedStatement interface provides various methods to support batch updates:

O addBatch(}— Adds a set of input parameter values to a batch
G int [] executeBatchi) - Executes a batch of statements in the specified data source
0 clearBatch() — Clears the batch before submitting it for execution

Let’s create an application, called BatchUpdate, to understand the concept better. In this application, you need to
create the BatchUpdateEx2.java file, which is used to perform batch updates by using the
PreparedStatement object.

The code for batchUpdateEx2.java is shown in Listing 13.10 (you can find the BatchUpdateEx2 java file on
the CT in the code'\ JavaEE\ Chapter13\, BatchUpdate folder):

520

Working with JDBC 4.0

Listing 13.10: Showmg the Code for the BatchUpdateEx:Z java File

puhhc sta
priver d= (D

. ps ““‘s"étf €3,1037
ps. addBatch‘{%g B

ps. sntxnt(l 302) il
psisetpoublal2, m),
CLipE ﬂnxntsisw,m)
ps. adthatch()
Y

'..mt counts{]= ps executeBatch{), N
¥ “Batch- ;Executed Succe’s?vfu’tfy‘“)“*‘

The example shown in L1stmg 13 10 demonstrates how to perform batch updates usmg PreparedStatement
and how to get update counts from BatchUpadateException. It also shows that the SQL statements added to
the batch are executed in the order in which they have been added.

Figure 13.34 shows the output of Listing 13.10:

Figure 13.34: Showing the Output of BatchUpdateEx2 java

521

Chapter 13

When you execute Listing 13.10, SQL statements specified in the batch are executed and the emp table is
modified. Figure 13.35 shows the content of the emp table after the batch updates have been performed:

T ey

&4 Run SQL Conmand L

a2

Figure 13.35

L ik i

: Showing the Content of the emp Table

.
in Figure 13.34, update counts are shown as -2; whereas, the records are inserted successfully (Figure 13.35). In such cases,
the update count value is equal to Statement. SUCCESS NQ _INFOQ, which indicates that the statement has been executed
successiully but the number of rows affocted is unknown.

Describing SQL 99 Data Types
SQL-1999 specifies the SQL-1999 object model that adds UDTs to SQL. There are two types of UDTs: distinct and
structured. A distinct type is based on a built-in data type, such as integer and a structured type has an internal
structure, such as address that might contain the details of street, state, and postal code attributes,
The data types available in SQL-1999 types are as follows:

BLOB data type

CLOB data type

Struct data type

Array data type

REF data type

All these types are packaged in the java.sql package, which provides the classes and interfaces to hold these
objects. Let’s describe these UDTs available in SQL-1999 types in detail.

Describing the BLOB Data Type

A BLOB is a built-in data type used to store binary large objects, such as images, audios, or multimedia clips, as
column values in a database table. The java.sgl package provides the Blob interface to represent BLOB values,
BLOB values can be implemented by using the SQL locator. This locator indicates that a Blob object contains a
peinter to point to SQL BLOB values in a database. Blob objects provide logical pointers to the binary large
objects rather than copies of the objects. Most of the databases process only one data page into the memory at a
time; i.e., the whole BLOB does not need to be processed and stored in memory just to access the first few bytes
of the Blob object. The lifetime of the Blob object is based on the lifetime of a transaction as well as the database
in use. :

Oo0o0o0oOo

The Blob interface provides various methods to store and retrieve BLOB values in an application.
Table 13.25 describes the methods provided by the Blob interface:

Table 13.25: Methods of the Blob Interface

public InputStream getBinaryStream() Retrieves the BLOB value, stored by the Blob object, as a strearn,

522

Working with JDOBC 4.0

Table 13.25: Methods of the Blob Interface

public byte[] getBytes(long pos, int length)

Retrieves all or some portion of the BLOB values stored by the Blob
object.

public leng length(}

Returns the number of bytes of the BLOB values taken by the Blob
object.

public leng position(Blob pattern, long start}

Returns the byte position of the BLOB value designated by the Blob
object.

public long position{byte[] pattern, long start)

Returns the position of the BLOB value in an array of bytes designated
by the Blob object.

public QutputStream setBinaryStream{long pos)

Retrieves the stream used to write the BLOB value.

public int setBytes(long pos, byte]] bytes)

Writes the BLOB value in an array of bytes designated by the Blob

object, starting at position pos, and returns the number of bytes
written, The position and the number of bytes to be written must be
specified in this method.

Sets all or part of the specified byte array to the BLOE value
designated by the Blob object and returns the number of bytes
written to the BLOB value.

Truncates the BLOB value represented by the Blob object.

public int setBytes(leng pos,
int offset, int len})

byte[] bytes,

public void truncate(long len)

Now let’s use these methods to store BLOB values into the database. The following heading describes the
following tasks:

0O Store BLOB values into the database
0O Read BLOB values
Now, let’s discuss each of them in detail.

Storing BLOB values

The Blob interface of JDBC does not provide any database-independent mechanism to construct a Blob instance;
and therefore, you need to either write your own implementation or depend on the implementation of the driver
vendor. If you are working with a previous version of JDBC 4.0, you can use the setBinaryStream (...) method of
the PreparedStatement and CallableStatement interfaces to construct a Blob instance as an InputStream of the
specified length. The constructed Blob instance is passed as parameter to the setBlob() method of the the
PreparedStatement and CallableStatement interfaces to store BLOB data in the database. Let’s create an
application called Blob to understand the concept better. This application contains a Java file named
InsertBlobEx.java, which is used to store BLOB values, as shown in Listing 13.11 (you can find the
InsertBlobEx.java file in the code\ JavaEE\ Chapter13\ Blob folder on the CD):

Llstmg 13.11: Showing the Code for the InsertBlObEx]ava File
- package com.kogent. jdbc-
~import java. sqh*-- -
wpﬂr‘t gava wtil.®
mport java.¥o.%;

#* ‘@author Suchita

*

Pub‘Hc class Insen;s'ggng G

Driver de {Dm 3‘{ ,E:“Eass.fomm(“ e o
"gracle. jdbc.driver,wac“fenﬂver“}
‘P.mpurti-es p=new: ireiesiil
L opeput(Tuser”, st
: ‘S?-w-nﬂt("pa ;
ctonnection. conz-d

Chapter 13

oo PreparedStatement ps="con.preparastatement(
a.insert into personaldetai)s(empno,phoro) vatues(?
ps.setint{l,Integer.parseIntis HRE
“File fenew FileCMyImglOL gif™y; = 00
“FITaEnputstrean fise new FileInputsStrean(f);
ps.setBinaryStream{2, fis, £int)F, length{d); -
St i IDT ipSlexecutelipdate(d; o

i - -

P gystam, byt . printIn{"Record "(ﬁse}'t_éd successfully . count : "+i);(':‘=f"‘~'3

73eye

L
s
.

Sl conaeleseQs
e ?}'U(lmj?@ﬁ LA
C o AAelass . . S . " :
You should create the personaldetails table before executing the code shown in Listing 13.11. The following
code snippet shows the command used to create the personaldetails table in the Oracle database:
“treate tabite personaldetai Vs(empno number, photo BLOBY;: =t o oo

When you execute the code given in Listing 13.11, an image is inserted into the Oracle database. The image value
is stored into the database by using the setBinaryStream() method of the PreparedStatement interface.
Figure 13.36 shows the output of the InsertBlobEx class:

N

Figure 13.36: Displaying the Qutput of the InsertBlobEx Class
In the earlier versions of JDBC 4.0, the Blob interface did not provide any database-independent mechanism to
construct the Blob instance; therefore, to solve this problem, JDBC 4.0 APIs provide a createBleb{) methed in
the java.sql.Connection interface. The createBlob method allows to create a Blol object to which the
bytes can be set and passed as a parameter into the setBlob() method of the PreparedStatement and
CallableStatement interfaces.

The following code snippet creates a Blob object, b, in JDBC 4.0:
e Wm%".(/mwm the" tonmgim L st e Al o DT
Blob, becon.createslob); //creates an empty:Blob A Blob- ohject with:no bytes
b.seraytestl, data); //heredata s abyrel] . ool
_. Now; the above created Blob object can be used with setBloh(y method T

After learning how to store the value of a Blob object in a database using the getBinaryStream() method,
let’s now Jearn how to retrieve the value of the Blob object from a database.

Reading a BLOB value
You can retrieve a BLOB value from a database by using the Blob object. Let’s create an application called Blob,
which contains a java (ReadBlobEx.java) file used to read BLOB values to understand the concept better.
Listing 13.12 shows the code of the ReadBlobEx. java file {(you can find the ReadBlobEx java file in the
code\ JavaEE\ Chapter13\ Blob folder on the CD):

Listing 13.12: Showing the ReadBIcbEx. java File

B ’ %; - jabes D

&

Working with JOBC 4.0

“"oracle. jdbc.diiver.oraclebriver”) .newInstance(}};

_3'(1521 XE".P):

s %ta*&mt HE=ton; mareszatmt(), e NGRS
~"'i‘_f-’mn1tsat rswt-«emmeﬂuer*?{ "select *: fmmrsmawetaﬂs"): L

L1stmg 13 12 uses the getbinaryStream(} method provided by the Blob interface to retrieve BLOB values (the
inserted image in this case). Figure 13.37 shows the output of the ReadBlobEx class:

Figure 13.37: Displaying the Output of the ReadBlobEx Class

Describing the CLOB Data Type

CLOB is a built-in data type used to store large amount of textual data. It can also be refered as a collection of
data stored as a single entity in a DBMS. CLOB stores the values of large character objects as a column value of a
row in a database. The java.sql package provides the Clob interface to represent the CLOB values. A Clob object
contains a SQL locator to point to the CLOB data in a database. Similar to the Blob object, the lifetime of the Clob
object is based on the lifetime of a transaction and the database in use.

The Clob interface provides various methods to store and retrieve CLOB values in a database, as described in
Table 13.26:

Table 13.26: Methods of the Clob Interface

public InputStream getAsciiStream() Retrieves a CLOB value designated by the Clob object as well as data stream.
public reader getCharacterStream() Retrieves the CLOB value as the java . io.Reader object.

public String getSubString(long pos, Retrieves a copy of the substring specified in the method. The CLOB value must
int length) be designated by the Clob object.

525

Chapter 13

Tabie 13.26: Methods of the Clob Interface

public long length(} Retrieves the number of characters from the CLOB value designated by the
Clob cbject.

public long position(Clob searchstr, Retrieves the position of the character from the CLOB value by starting from

long start) the value of the start parameter.

public long position(String searchstr, Retrieves the character position in the CLOB value where the searchstr String

long start) appears. The searchstr String represents the String to be searched in the CLOB

) value.

pu'biic OutputStream Retrieves the stream to be written into the CLOB value. The starting position of

setAsciiStream(long pos} the stream must be specified by the pos parameter of the method. In addition,
the CLOB value must be designated by the Clob object.

public Writer Retrieves the stream used to write the CLOB value, starting from the position

setCharacterStream{long pos) specified by the pos parameter of the method.

public int setString{long pos, Writes the specified string, passed as the str parameter, into the CLOB value at

String str) the specified position, pos.

public int setString(long pos, String str, Writes the specified string of the len length into the CLOB value, starting from a

int offset, int len) specified position.

public void truncate{long len) Truncates the CLOB value for length of len characters, associated with the Clob
object.

The java.sql.Clob interface provides a logical pointer to the character large object rather than a copy of the
large object. Let's now discuss how to retrieve CLOB values from a database and how to store these values in the
database.

Now let’s understand them in detail.

Storing CLOB Vafues
Similar to the Blob interface, the Clob interface provides no database-independent mechanism to construct the
Clob instance, so you need to either write your own implementation or depend on the implementation of the
vendor. If you are working with a previous version of JDBC 4.0, you can use the setCharacterStream(...) method
of the PreparedStatement and CallableStatement interfaces to construct a Clob instance as a ReaderObJect of
specified length. You can store the CLOB data in a database by passing the Clob instance as a parameter to the
setCleb () method of the PreparedStatement and CallableStatement interfaces.

Let’s create an application called Clob to understand the concept better. This application contains the
InsertimployeeProfile. java file to store CLOB values.. Listing 13.13 shows the InsertEmployeeProfile java
file (you can find the InsertEmployeeProfile java file in the code\ JavaEE\ Chapter13\ Clob folder on the CD);
Listing 13.13: Showing the Code for the InsertEmploveeProfﬂe java File

pa.ckage com, kcogent jobc;
”‘import Javaisql.eg . : : B S ST :
B ﬁ»‘imrtiéavt.utﬂ‘-";v H . . : Do et e

import java.io.*; U RTI :

e

* Gauthor suchita © R IR T SR R

~pub11c ‘class- InsertEmphyeerfﬂe £ -
pub'hcwstat‘rc void mam(strmg s[1) thmws Exceptmn {‘
“ e (Driver) “(Class. Forname ()

; 1cle. jdbsc. driver. ‘oraciepriver')
3 Mpeﬁt'igg punew Prupertwes(j i

p.put(’user”, “scort");
assword" ; "twger ¥ ;

Working with JDBC 4.0

The user needs to create a table (empprofﬂes) w}uch contains the employee proflle to store the employee details
into the database by using the CLOB value. In other words, to execute Listing 13.13, you first need to create the
empprofﬂes table in the Oracle database, as shown in the following code smppet

e

Listing 13.13 shows how to store a CLOB value into the database by using the setCharacterStrea.m()
method provided by the PreparedStatement interface. We are storing a word document in the Oracle
database. The document contains all the details of a particular employee.

Figure 13.38 shows the output of the]nsertEmployeeProflle class:

Figure 13.38: Displaying the Output of the InsertEmployeeProfiie Class
The JDBC 4.0 APIs provide the createClob() method in java.sql.Connection. The createClob method
allows you to create an empty Clob object. The byte data to the empty Clob object can be added or set by
invoking the setString() or other relevant methods depending on the type of the byte data that you want to add
to the ob]ect The followmg code snippet shows how to create a Clob ob]ect

After learmng how to store CLOB values into a database by usmg the getCharac terstream() method let s
learn to retrieve CLOB values from the database.

Reading CLOB Values
The Clob interface provides the getClob() method to access the CLOB values stored in a database. You can
also retrieve CLOB values from a database by using the Clob object.

Let’s create an application called Clob to retrieve CLOB values. In this application, you need to create the
GetEmployeeProfile. java file, as shown in Listing 13.14 (you can find the GetEmployeeProfile java file in
the code' JavaEE\ Chapter13\ Clob folder on the CD}):
Listing 13.14: Showing the Code for the GetEmployeeProflle java File

package com.. kogent‘ 3dhc, “

T @author suchita
527

Chapter 13

e B i St PE ol
public class GetemployeeProfile { '
pubTic static void main(String s[1) throws Exceprii
iver de (Driver) (. Class.for
acle. jdbc:driver .oracleprive
Properties penew Properties(}:

‘System. out printing
com.close(); .
e AnE : : AL
Listing 13.14 is used to access the details of the employee by using the getCharacterStream () method of the
ResultSet interface.

Figure 13.39 shows the output of the GetEmployeeProfile class:

Figure 13.39: Displaying the Output of the GetEmployeeProfile Ciass

The Blob and Clob objects can persist even affer the transaction in which they are created is complete. Moreover, these objects
may persist for a long time in case of lengthy transactions. This results in shortage of resources for the application using thess
objects. To overcoms this problem, JDBC 4.0 provides the free() method of java.sqgl.Blok and java.sgl.Clob, which
you can use fo release the Blob and Clob objects when they are not required by the application.

Describing the Struct (Object) Data Type

Most of the databases now enable you to create Struct data types (also known as structured type), which are
used to define complex data types. This is required in case you want to create a UDT in a database. For example,
you might need to create a UDT to represent the address of an employee in a single column. The following code
snippet shows the syntax to create a structured type in a database:

TR reRke TYPE chames: as OBIECT. (xvariable nakti s ey S G s L b sraiitn

After creating a structured type, you can reference it to create the required UDT. The following code snippet
shows the example of creating a UDT:

Syasr

Working with JDBC 4.0

oAy

pincode.number .

The precediné code snippet creates a structured type named empédd;'ésé, ;Nhich can store the values of the
flatno and pincode fields of type number, and the street, city, and state fields of type varchar2. It also shows how
to create a table with the empaddress type column and insert record into that table.

After learning to create a structured type, let’s now learn how to store and retrieve the values of structured
types. JDBC provides two approaches to store and retrieve the values of structured types:

0 A UDTin Java to represent the database object type
O The java.sql.Struct interface
Let’s learn about these in detail next.
Using User-Defined Object Types in Java to Represent Database Object Types

JDBC 2.0 specification includes support for UDT by providing various methods in the PreparedStatement,
CallableStatement, and ResultSet interfaces of JDBC APL

Table 13.27 shows the methods to support UDT:

Table 13.27: Methods Supporting UDT along with their Interfaces

setObject (int parameterindex, Object o) java.sql PreparedStatement
setObject (int parameterindex, Object o, int java.sql.PreparedStatement
targetSqltype)

setObject (int parameterindex, Object o, int java.sql.PreparedStatement
targetSqltype, int scale}

getObject (int columnindex) java.sql. ResultSet
getObject (int columnindex, java.util Map m}) java.sql.ResultSet
getObject (String columnName) java.sql.ResultSet
getObject (String columnName, java.util.Map m) java.sgl.ResultSet
getObject (int parameterindex} java.sql.CaliabieStatement
getObject (int parameterindex, java.util. Map m) java.sql.CallableStatement
getObject (String parameterName) java.sql.CallableStatement
getObject (String parameterName, java.util Map m) java.sql.CallableStatement

In a JDBC application, UDTs must conform to the following rules:
0 They should be declared as public non-abstract classes.

O They should be subtypes of the java.sgl.SQLData interface. The java.sql . SQLData interface declares
the following methods:

String getSQLTypeName() —Returns the fully qualified name of the SQL UDT represented by the
Struct object. This method is called by the JDBC driver to retrieve the name of the UDT instance,
which is mapped to this instance of the java.sql.80LData interface.

void readSQL (SQLInput stream, String typeName)— Populates the current Struct object with data
read from a database. This method generally reads each statement of the SQL type from the given
input stream. This is done by calling a method of the SQLInput interface to read the data in the order
they appear in the SQL definition of the type. It then assigns the data to appropriate fields of the
Struct object. The JDBC driver initializes the input stream with a type map before calling this method,
which is used by the appropriate SQLInput reader method on the stream.

void writeSQL (SQLOutput stream) — Writes the current object to the specified SQLOutput stream,
which converts it back to its SQL value in the data source. The implementation of the method
generally writes each element of the SQL type to the given output stream. This is done by calling a
method of the SQLOutput interface to write each item in the order they appear in the SQL definition

of the type.
529

Chapter 13

0 They should have a no argument constructor.

Let’s create an application called 3QLDataInterface to understand the concept better. In this application,
you need to create the EmployeeAddressjava file, which is used to implement the SQLData interface to
represent the empaddress type created in the preceding code snippet.

Listing 13.15 shows the content of the EmployeeAddess java file (you can find the EmployeeAddress.java file in
the code\ JavaEE\ Chapter13\SQLDatalnterface folder on the CD):

Listing 13.15: Showing the Code for the EmponeeAddress java File
package com.kogent.jdbc; B

1mp‘ort java.sgl.*;

* @author Suchita
*/

 plibties ‘cTags employeeaddress 'im"lémtﬁts_ sawata :
public smploveerddress{i{} -
public void wr‘fteSQL(SQLOutput sa) threws Wx&
: 50‘ ﬁmﬂtifm)! i s
50 writesuing(stmet)
ditestringloity),

st&ta-si ,»semt
'mmsi readl:nt(

Yrhehe i:‘ypéﬁ
-‘}%Nm :

"“{mam typemm }
pub}i: vom sets]mo(m‘: g

& me void sﬁmfycggri fg
i1 public void: setsStata{String §):
 publi¢ vaid: sexpin(int i) {pt
Tpubtic vaTd setTypename(Strir
public int:getFlatno(){réturn

public String getCity(){return: tﬁw§ ,.
public string getstate() {retyrn. stare;
‘m int getrinO{return pin;}

“Sreet, taty.state, tymam
int ﬁin,ptn. - : .
Micass, Lo S R o

Llstmg 13.15 shows the JDBC UDT to represent the ernpaddress type that holds the values of the ﬂal:no street,
city, state, and pin fields.

Implementing the java.sqgl.Struct Interface

Now, let's understand the Struct data type by creating an application called EmployeeAddress. In this

application, you need to create a java (InsertPersonalDetails.java) file that stores an Employeeaddress object

in the Oracle database. You can copy the EmployeeAddressjava file in the EmployeeAddress application

directory. The application is available on the CD in the code\JavaEE\ Chapter13\ EmployeeAddress folder. You

need to perform the following steps to implement the EmployeeAddress application:

0 Create an object type named empaddress and a database table named personaldetails in the Oracle
database

O Create a java file InsertPersonalDetails.java, which inserts the object of the EmployeeAddress
class in the database Oracle

530

Working with JDBC 4.0

Let’s start creating an object type and a database table. Figure 13.40 shows the SQL commands to create the

empaddress object type and personaldetails table in the Oracle database using the Run SQI. Command
Line prompt of Oracle:

Figure 13.40: Creating Tables using Run SQL Command Line

After creating the object type and table, you need to create a java file, InsertPersonalDetails. java, which
inserts the object of the EwmployeeAddress «class into the Oracle database. The
InsertPersonalDetails. java file is shown in Listing 13.16 {you can find the InsertPersonalDetails java file
in the code)\ JavaEE\ Chapter13\ Employee Address folder on the CD):

Listing 13.16: Showing the Code for the InsertPersonalDetails.java File

- % ‘@Gauthor Suchita
;-*f:-. L - .-
ki

Chapter 13

ssetObject(3,addr);
L :i=ps.executeupdate(); : _ g ke o
System.out. prmt'fn(“Persona‘i Deuﬂs of enp'lo ' “Insertat
m.doseo, ,

}I/m’m 7
I_lstmg 13.16 uses the setObj ect () method of the PreparedStatement interface to store the Employeeaddress
object into the Oracle database.
After creating all the required files, let’s execute the InsertPersonalDetails.java file, as shown in

Figure 13.41:

s

-i.

Figure 13 41: Showmg the Output of the InsenPersonaIDatails Java File
Figure 13.41 shows the output of Listing 13.16, which inserts a record into the personaldetails table.

To update the Object type, you can use the same setObject{) method as used in Listing 13.16.

Let's now learn how to retrieve the object type value by creating an application that contains the
GetEmployeeAddress. java file. Listing 13.17 shows the GetEmployeeaddress . java file {you can find the
GetEmployeeAddress.java file in the code\JavaEE\ Chapter13\ EmployeeAddress folder on the CD}:

L1shng 13.17: Showing the Code for the GetEmployeeAddress java Flle

. péackage com, kogent jdbc' :
.;:x:*im Gava.sglioe;
: wiw iam.um.w

" ‘@;Mmss add
System.out.pri nt;lﬂ(“

532

Working with JDBC 4.0

Listing 13.17 shows the code to retrieve the object type value from the Oracle database and represent it as the
EmployeeAddress type of object in Java,

Figure 13.42 shows the output of Listing 13.17:

Figure 13.42: Showing the Output of the GetEmployeeAddress.java File
Figure 13.42 shows the output of Listing 13.17 that retrieves the object type value from the Oracle database by
using the EmpAddress type.
In addition to UDTs, JDBC 2.0 includes a built-in type, java.sgl.Struct, which represents the SQL
structured type. A Struct object contains values for each attribute associated with the Struct data type. By
default, an instance of Struct is valid until the application has a reference of its instance. The Struct interface
provides certain methods to work with the Struct objects.

Table 13.28 describes the methods of the Struct interface:

Table 13.28: Methods of the Struct Interface

public Object[] getAttributes() Retrieves the structured type attributes and ordered values. Struct values
are represented by the Struct object.

public Object[] getAttributes(Map map) Retrieves the structured type attributes and ordered values in an array,
Struct values are represented by the Struct object.

public String getSQLTypeName(} Retrieves the SQLU type name and SQL type of the SQL Structured type

associated with the Struct object.

The Struct types can be used with JDBC programs to communicate with a database. Listing 13.18 shows how to
use the Struct UDTs in a database (you can find the GetEmployeeAddressUsingStructjava file in the
code\ JavaEE\ Chapter13\Struct folder on the CD}):

Llshng 13 18 Showmg the Code for the GetEmployeeAddressUsmgStruct java Flle

;;Sor'iver vén {Drwer
forgracte jabcdrive
. -Properties gfn@f
o Upputiuser’, " SEOTEY) P i s
LU poput(Tpasswo : [
i Connection coned, camnect (! jdbe : araciaJMu‘ﬁlQl 168.1, 123,1521.::5 i,p) e
LA SRt ement S TECOr mamswmz@, : : e

T ResyltSet isestiexacutequenry(: :
mesTact parmanent address 'Frm perscma’!det‘aﬂs where enpno= wtﬂ]’?.

533

Chapter 13

AFCrsamentOd. i i s ..
sk Systemoout.priotin(Epployee Found:
Che U sTruct Tstructs=(Struct Y rs .getobiect (2
- Object addr{]=struct.getattributes);
WW}?E% L Flatno: 1)

¥
3

%)
w

W‘i&
3L ity

used the Struct UD

3.18, in which we have

oy

The cutput of Listing 1

Describing the Array Data Type
Array, one of the SQL 99 data types, offers you the facility to include an ordered list of values within a column.,
The java. sql package provides a java.sql.Array interface to store the values of the array types. The array
object can be implemented by using a SQL locator, which indicates that the array object contains a logical pointer
to locate the array value in a database. Since array objects contain UDTs, you need to create a custom mapping
between the Class object for the class implementing the SQLData interface and the UDTs. You need to perform
the following steps to create a custom mapping;

O Create a class that implements the SQLData interface. The methods of the SQLData interface are used by the
data type that need custom mapping.

O Define a Map type that contains the SQL types for UDTs and the classes that implement the SQLData
interface. '

The array interface provides some methods to create custom mapping between the classes and UDTs. These
methods are described in Table 13.29:

Table 13.29: Methods of the Array Interface

public Object getArray(}

Retrieves the content of the array object. Array values must be
designated by the array objects.
public Object getArray(long index, int count) Retrieves a portion of the array value specified by the index. The array

value must be designated by the array object.

public Object getArray(long index, intcount, Retrieves a portion of the array value specified by the index. It also

Map map} specifies the number of elements that you can access. The array value
must be designated by the atray object.

public Object getArray(Map map) Retrieves the content of the SQL array value. The array value is
designated by the array object.

public int getBaseType() Retrieves the JDBC elements present in an array. The array value must

be designated by the array object.

public String getBaseTypeName() Retrieves the name of the SQL elements in an array. The array value
must be designated by the array object.

534

Working with JDBC 4.0

Table 13.29: Methods of the Array Interface

public ResultSet getResultSet() Retrieves the SQL ResultSet elements present in an array. The array
value must be designated by the array object.

public ResultSet getResultSet(long index, Retrieves the sub array elements, starting at the index of the array.

int count) The array value must be designated by the array object.

public ResultSet getResultSet(long index, Retrieves the sub array elements, starting at the index of the array.

int count, Map map} The sub array alsc contains a count of the elements. The array value
must be designated by the array object.

public ResultSet getResultSet(Map map) Retrieves the SQL array elements stored in the specified Map instance.

The Array type contains more than one value of the same data type. The syntax to create an array type in the
database is as follows:

Ereate TYps Xtyne names -as VARRAY{<Tengthe) of auvpRs
To insert a record by using the Statement interface, you do not need to use the java. sql Array mterface
Instead, you can execute the preceding query by using the executeUpdate() method. You can use the
setArray () method of the PreparedStatement interface to bind an array object as a parameter to a statement.
However, in earlier versions of JDBC, the Array interface did not provide any database-independent mechanism
to construct an array instance. In such cases, you need to either write your own implementation or depend on
the implementation of the driver vendor.

Listing 13.19 shows how to use the SQL array types with the PreparedStatement objects (you can find the
[nsertEmpPassportDetalls.]ava file in the code\]avaEE\ChapterIS\ Arrays folder on the CD}:

PP

Chapter 13

}/fmam

“¥fctass : : : *
Llstmg 13.19 uses the SQL array types to insert the array values into an array. To insert the array va]ues in the
array, you need to create the array type in the database, so that the values inserted from the application through
the array type can be stored in the array. The array type for the Array application is the emppassportDetails
table with the columns. The following code snippet shows how to create the emppassportDetails table:

cotreate stable emppassportbetails

; eiipno ‘humber, passportno varchar? (10},
'visas.taken visa_nos);

insert into emppassportpetaﬂs vaTues(7934 ’123.45A123',
visa nos('vl', "v2','v3' 'y v5'));

The array type can be created at the Run SQL Commancl Line prompt, and then can be used by the user to insert
data into the emppassportDetails table.

Figure 13.44 shows the output of the array type at the Run SQL Command Line prompt

Flgure 13.44: Creatlng an Array Typein Oracle

Figure 1344 shows the amay type created in the Oracle database. This type is used by the
InsertEmpPassportDetails.java file to store the data into the database. The table (emppassportDetails)
contains the array types to store multiple data of the same type in a column. The column values inserted through
Listing 13.19 are stored in one of the columns in the table (emppassportdetails).

Figure 13.45 shows the output of Llstmg 13.19 (InsertEmpPassportDetails. java) using the array types:

Flgure 13.45: Showmg the Output of the InsertEmpPassportDetalls .java File

In Listing 13.19, we have used the implementation for Array given by Oracle, which works only with the Oracle
JDBC driver; consequently making the application a vendor-dependent application. JDBC 4.0 solves this
problem by introducing the createArrayof () method in java.sgl.Connection. The createArrayOf ()
method of java.sql.Connection allows you to create vendor-independent java. sql.Array type of object
with the given element type and value, as shown in the following code snippet:

Preparedstatement ps=con.prepareStatement("insert into emppassportuetaﬂs values(? S7");
ps.setInt(1,7934); :
ps.setstring(2, "12345A134") ; : .
str,'ng 51[]={"V1" y llv2ll , “V3 . "V4" il l }‘

536

Working with JOBC 4.0

Array -ascon. Cl"eateArrayO‘F(“VARCHAR", 51)
ps.setarray{3,a)i . - -

We can also retrieve the Array type value from a database using]DBC Llstmg 13.20 shows how to read the
Array type value from the database using JDBC (you can find the GetEmpPassportDetailsjava file in the
code\ JavaEE\ Chapter13\ Arrays folder on the CD):

Listing 13.20: Showing the Code for the GetEmpPassportDetails.java File
package coni

* @author suchxta _ :
: pubhc class GetEmpPassportsetaﬂs
pub'hc stat1c vmd mam(Str'ing s[]) thr'ows Exceptmn

priver d=. {Driver): (.Class.Torname(
"oracle. johc.driver.oraciebriver™), newInstanceQ),&

properties p=new P_rajaert“f es(};
p.put("user”,"scott");
p put("password" "t1ger").

cannectwn conzd,_connect(. . ' L
_;_f‘JgihC':qra;ﬁq:;h :@192.168.1.123: 1521 XE".p). ' ,

- "Statement stucon createStatementO B

' _-ResultSet rs-st executeQuery("se]ect gassportno, visas, taken 'Frmi :
emppasspor‘tbetaﬂs _where empnofn "+ [0

ssport Betai1s are:\n :
POFENOL 4TS, getsrring(ﬂ*-“\"
are” \ﬂ\t"):

-The ResultSet produced here o represent Am*ay va?‘w
S Ast: m‘lumn represents the e'lmem: fmdex an co1unm WB
: .*
bosoiean f’lagzﬁsl next(}.
whﬂe(ﬂag) RS
L yst&m ‘out. prmt(rsl getStnngQ)).
.. ersl ext()'f K

B ’}mf

i Sysste;& owg pﬂﬂﬂh("l’;{ﬁployee ROL Found"),
systan nut prisneln();
L . con. c'lose(), e _
}Hclass .
The example shown in Llstmg 13. 20 reads the Array type value from the Oracle database

Figure 13.46 shows the output of Listing 13.20:

537

Chapter 13

Figure 13.46: Showing the Output of GetEmpPassportDetails.java

In the output shown in Figure 13.46, data is selected from the Oracle database. In Listing 13.20, the data is
searched based on the specified employee number. In case the specified employee number is not found in the
Oracle database, the Employee not Found message is displayed.

Note that the Array objects remain valid for at least the duration of the transaction in which they are created.
This results in the shortage of resources in case of lengthy transactions. You can use the free{) method of
java.sql.Array interface in JDBC 4.0 to release the array resources.

Describing the Ref Data Type
The java.sql.Ref interface represents the Ref type values, which are instances of the structured type. Each
Ref value contains a unique identifier, which points to the Re £ object. The values are stored either as a column
value in a table or as an attribute value in the structured type. Since the Ref value is a logical pointer to a SQL
structured type, a Ref object is also used as a logical pointer to the Ref values. Ref objects are stored in the
database by using the methods of the PreparedStatement . setRef () interface.

Table 13.30 describes the methods of the Ref interface:

Table 13.30: Methods of the Ref Interf

public String getBaseTypeName() Returns the name of the SQL structured type referenced by the SQL ref
object

public Object getObject(} Retrieves the SQL ref object, which references the SQL structured type

public Object getObject(Map map) Retrieves the SQL structured type and maps the Java type given by the
map specified as an argument

public void setObject(Object value) Sets the values of the SQL structured type, which is the reference of ref
object

After leamming how to implement the classes and interfaces of the java.sgl package, let’s discuss the
implementation of the javax.sgl package.

Exploring JDBC Processes with the javax.sql Package

The javax.sql package, available in the JDBC API, is also known as the JDBC extension package. The javax.sql
package is used to develop the client/server sided applications and provide server sided extension facilities,
such as connection pooling and RowSet implementation. In addition, it uses the XA enabled connections for
distributed transactions. The javax.sql package provides the following implementations that are used in building
server-side applications:

O JNDl-based lookup to access databases via logical names — Allows you to access database resources by
using logical names assigned to these resources. In other words, instead of allowing each client to load the
driver classes in the respective local virtual machines, you can use the logical names assigned to each
resource. A

O Connection pooling—Serves as an intermediate layer provided by the javax.sql package to handle multiple
connections. In this case, the responsibility for connection pooling is shifted from Application developers to
the driver and the application server vendors.

538

Working with JOBC 4.0

O Distributed transaction —Provides support to handle multiple transactions in the Java EE environment by
using the framework provided by the javax.sql package. With this framework, you can enable the support
for distributed transactions with minimal configuration.

O The RowSet—Refers to a JavaBeans compliant object that hides ResultSets. The RowSet retrieves and
accesses the data stored in a database. A RowSet may be connected when the JDBC connection is
established and disconnected when the JDBC connection session ends up.

To understand the JDBC process with the javax.sql packages, let’s explore the following broad-level steps in

detail:

0O Using DataSource to make a connection
0 Implementing Connection pooling

O Using RowSet objects

Q Using transactions

Using DataSource to Make a Connection

With the help of the classes and interfaces provided by the javax.sgl package, such as DataSource and
DriverManager you can establish as well as manage connection with a data source. However, the Datasource
mechanism is only preferred because it has many advantages over the DriverManager mechanism. The
DataSource interface provides the following advantages, when used to make a connection:

O The developers need not provide code to implement a driver class.

0 If the properties of a data source or driver changes, instead of modifying the application code, you can
simply make the appropriate changes in the configurations of the data source.

O The connections established by using the DataSource object have the pooling and distributed transactions
capabilities. This object also allows the Web container to communicate with the middle-tier infrastructure.
However, the connections established with the help of DriverManager do not have the capabilities of
connection pooling or distributed transaction.

DataScurce implementations are provided by the driver vendor. A particular DataSource object represents a

particular physical data source, and each connection created by DataSource is a connection to that physical

data source.

The Java Naming and Directory Interface (JNDI) Naming Service is used to provide a logical name for the

DataSource to make a connection. This naming service uses the Java Naming and Directory Interface™ (JNDI)

APL The DataSource object can be used to retrieve the logical name associated with the underlying database.

The application can then use the DataSource object to create the connection to the physical data source it

represents.

The DataSource object helps in maintaining connection pooling; therefore, it can be used to work with the

middle-tier infrastructure. Moreover, a DataSource object can also be implemented to work with the middle-

tier infrastructure so that the connections it produces can be used for distributed transactions without any
special coding.

Exploring Connection Pooling

Connection pooling means that the connection is reused rather than created each time it is requested. A
connection pool facilitates reusability of database connections and maintains a memory cache of connections.
The connection pooling module lies at the top layer of the standard JDBC driver product.

This practice of using connection pooling in server-side application is performed in the background. In addition,
it does not affect the procedure by which an application is coded. Instead of using the DriverManager class, a
DataSource object (an object implementing DataSource interface) is used by an application to obtain a connection
from the connection pool. A DataScurce object is registered with a JNDI Naming service. After the DataSource
object is registered, it can be automatically retrieved by using the INDI Naming service. The following code
snippet shows the creation of the DataSource object in a connection pool:

539

Chapter 13

s CONEENE CONLXT = new. InitialContext(ds .in . v i v anie b
. Daxasource ds.« (0atasource) contxt.lookup("jdbe/sequetink™)y ..
In the preceding code snippet, if the Datasource object provides connection pooling, the concerned application
automatically benefits from the connection reuse. This can be achieved without any code manipulation. The
reused connections from the pool perform tasks similar to the newly created physical connections. When all the
required tasks are performed by the application, the connection is explicitly closed. The following code snippet
shows the procedure to close the database connection:

o7 Cotimection dbicon = ds,getConnection(lscott”, “tiger™y;

L // DO some database activities using the conhection... ' =
In the preceding code snippet, the closing event of a pooled connection signals the pooling module to place the
cormection back in the connection pool for future reuse.

Traditional Connection Pooling

A general framework has been provided by the]DBC AFI to provide the support for traditional connection
pooling. In traditional connection pooling, third-party vendors provide classes that support the connection
pooling mechanism. In this way, the implementation of the specific caching or pooling algorithms can be done
by third-party vendors or users. The JDBC4.0 API uses the ConnectionEvent class and provides various
interfaces to create connection pool. To provide connection pooling in a server-sided application, the DataSource
must implement following interfaces:

O ConnectionPoolDataSource —Specifies the data source that is being used in a connection pool. The
ConnectionPoolDataSource interface also acts as a factoy for the pooled connection objects.

G PooledConnection— Refers to an object that manages the hierarchy for connection pool.

8 ConnectionEventListener—Refers to an object that handles the events generated by a PooledConnection
object.

O JDBCDriverVendorDataSource — Refers to a class that implements the standard
ConnectionPoolDataSource interface. This interface provides hooks, which can be used by the
third-party vendors to implement pooling as a layer on top of their JDBC drivers. Moreover, in this case, the
ConnectionPoolDataSource interface acts as a factory that creates PooledConnect ion objects.

a JDBCDriverVendorPooledConnection—Requires a JDBC driver vendor with a class that implements the
standard PooledConnection interface to implement the connection pooling mechanism. The third-party
vendors implement pooling on JDBC drivers with the help of this interface. In such cases, a
PooledConnection object acts as a factory of the Connection objects. A PooledConnection object is the
physical connection to the database, while the Connection object created by the PooledConnection
object is simply a handle to the PooledConnect ion object.

0O PoolingVendorDataSource — Requires a third-party vendor to provide a class which implements the
DataSource interface to implement the connection pooling mechanism in a server-sided application. This
interface is the entry point that allows interaction with their pooling module. The
ConnectionPoolDatasource object creates PooledConnection objects as per the need.

0 PoolingVendorConnectionCache —Specifies that to define the PoolirngVendorConnectionCache
c¢lass, the JDBC 4.0 API does not provide the interfaces, which are to be used between the DataScurce
object and the connection cache. Usually, a connection cache module contains one or multiple classes.
Figure 1347 shows the PoolingVendorConnect ionCache class, which is used as a simple way to convey
this concept. The connection cache module must contain a class that implements the
ConnectionEventListener interface. Whenever the connection is closed or a connection error occurs, the
PoolingVendorConnectionCache interface receives ConnectionEvent objects from PooledConnection
objects. Moreover, when a connection closes on a PooledConnection object, the connection cache module
returns the PooledConnection object to the cache, as shown in Figure 13.47:

Working with JDBC 4.0

beerfa P! 3 2v]
JOBCDsivarVendorDataSovice <S:1ms°u°:: cgnm
4
<<Interfaca>>
ConneclionPooiDatas PooiingvVendorDataSource
. LLUBP>
<<ppintains>
<<croate>>
PouiingVendorCannectionCache
«<<interface>>
PoolediConnection y
+eventSource
N " <<|ntarface>>
" eventListenar ConnecticnEvent
<<creata>> LT TS
]
1 JDBCDriverVandorPooladConnaction]
<ccrpatg>>

Figure 13.47: Showing the JOBC Connection Pooling Architecture

Connection Pooling with the javax.sql Package
You can also implement the connection pooling mechanism in an application by using the javax. sql package.
The javax.sgl package provides a transparent meaning of connection pooling. This approach enables the
Application server and the database driver to handle connection pooling internally. It is also important to
remember that as long as you use DataSource objects to get connections, connection pooling will automatically
be enabled after you configure the Java EE application server.
You should note that the change in the additional connection pool-is maintained by the Application server with
the coordination of the JDBC driver. In other words, there is no additional programming requirement for JDBC
client applications. Instead, the adminisirator of the Java EE server is‘\;{equired to configure a connection pool on
the Application server. The syntax and the names of classes usetl to configure the connection pool are
implementation dependent. However, with a JDBC 4.0 compliant Application server and database driver, the
server administrator typically specifies the following:

A class implementing the javax.sql.ConnectionPoolDataSource interface

A class implementing the java. sgl.Driver interface

The size of the pool (minimum and maximum sizes}

Connection time out

The authentication parameters, such as loginid and password

The javax.sql package provides interfaces and classes to configure the Java EE server to enable connection

pooling; therefore, the client application does not implement or access these interfaces directly. The javax.sql

package specifies three interfaces and one class to implement connection pooling. The interfaces and class for

connection pooling provided by the javax.sql package are:

gooeoco

O The javax.sql.ConnectionPoolDataSource interface

0 Thejavax.sql.PooledConnection interface

O The javax.sql.ConnectionEventListener interface

0 Thejavax.sql.ConnectionEvent class

Let’s discuss these interface and classes used for connection pooling in the javax.sq! package.

541

Chapter 13

The javax.sql.ConnectionPoolDataSource Interface
The javax.sql.ConnectionPoolDataSource interface is similar to the javax.sqgl.DataSource interface.
However, instead of returning java.sql.Connection objects, the javax.sql.ConnectionPoolDataSource
interface returns the javax.sql.PoolConnection objects. The following code snippet lists the methods that
return javax.sql.PooledConnection objects:
“public javax.sql.pooledConnection getPooledConnection (). inisi i i
o throws: java.sql.SQLException™ SRR S TR
tpublic_ javax.sql . PooledConnection: . Sl
- getPooledConnection (String user, String password) = <l
- throws. java.sql.sqLException = - LRI
As shown in the preceding code snippet, both the getPooledConnection() and getPooledConnection(String user,
String password) methods return the javax.sql.PooledConnection objects.

The javax.sql. PaoledConnection Interface

When contnection pooling is enabled, objects implementing the javax. sql.PooledConnection interface hold
a physical database connection. This interface is a factory of javax.sql.Connection objects.

The following are the methods provided by the PooledConnect icn interface:
public javax.sqi.Connection getConnection() throws java VSQUSQLExCeption

The getConnection () method returns a java.sql.Connection object. The returned Connection object,
in turn, is a proxy for the physical connection held by the javax.sql. PooledConnection object. You need to
invoke the closef) method to close the connection with the database. The following code snippet shows the
implementation of the close() method on the PooledConnect ion object:

oopablic void cloge)7 thraws: java. 91 . SGLEXceprioh. . BT e
As shown in the preceding code snippet, the close{) method throws the SQLException exception, if any
exception occurs during the closing of the connection with the database.

The javax.sgl.ConnectionEventlistener Interface

The connection pooling components implement the ConnectionEventlListener interface. The connection
pooling components are mainly provided by the driver vendor or other software vendors. The JDBC driver
notifies the ConnectionEventListener object, which registers a pooled connection when an application
finishes execution. The notification of the event occurs after the application calls the close method on the
PooledConnection object. The ConnectionEventListener interface is also notified when the connection is
established. The JDBC driver also notifies the listener, before the driver throws the SQLException exception, but
the PooledConnection object is already in use. There are two different methods, connectionClosed() and
connectionErroroccured(), containing the ConnectionEventListener interface. The following code
snippet represents the connectionClosed{} method in the ConnectionEventListener interface:

‘public. void connectionClosed(ConnectionEvent avent) - x5 Fi oo i o o :
When the application calls the close (} method, the connectionClosed() method is invoked. In this case, the
connection pool marks the connection for reuse, as given in the following code snippet:

‘public void conrectionErroroccured{ConnectionEvent event): a0 : CoL
When fatal connection errors occur, only the connectionErrorOccured (ConnectionEvent event) method is
invoked. In this case, the connection pool may close the Connection on this event and remove it from the pool.

The javax.sql.ConnectionEvent Class
The javax.sql.connectionEvent class represents connection-related events and provides information
about them. The ConnectionEvent objects are generated when the application closes the pooled connection
and the listeners are notified. This event handling is similar to the event handling in Abstract Window Toolkit
(AWT) events. It is decided by the connection pool whether or not to add the connection event listeners to the
pooled connection and when connection events oocur, the connection listeners are notified,

Implemention of Connection Pooling

The application server implements the mechanism of connection pooling by implementing the
ConnectionPoolDataSource class. First, you need to instantiate the ConnecticnPeclDataSource
class, set its properties, and then bind the class to a name in JNDI context.

542

Working with JOBC 4.0

The following code snippet shows how to implement the ConnectionPoolbDataSource Class
- gom. app’!‘icat‘lcn SErver. _cmm}aatas@urce cds = m_, : :
7 comabpld pataSource

cds .setServername (" hyS

context contxt s naw 1

coﬁtxt.bind{"jm/m‘iﬁed"" s : : :
The preceding code snippet shows a data source that is created in]NDI The user can access this data source
name to establish a connection. The data source returns a connection.

The data source, which is to be set with a connection, must provide the following properties:

0 InitialPoolSize —Specifies the number of connections that the connection pool can maintain during a
session.

0 minPoolSize —Indicates the minirnum number of connections to be maintained in the pool. The 0 value
indicates that connections will be created when required.

@ maxPoolSize —Indicates the maximum number of connections the pool should entertain. The 0 value
indicates that there is no limit.

0 maxIdleTime — Indicates the idle time of connections in a pool. It is represented in seconds.

Using RowSet Objects

The javax.sql.RowSet object is a set of rows from the ResultSet object, or some other data source, such as
a file or spreadsheet, represented in tabular form. All RowSet objects inherit the ResultSet interface and can
be used as JavaBeans components in a visual Bean development environment. A RowSet is created and
configured at design time and executed at run-time. The inbuilt JavaBeans properties enable the RowSet object to
be configured and connected to the JDBC DataSource. A group of setter methods is used to pass input
parameters to the command property of the RowSet object. The value assigned to the command property
is generally the SOQL query, which is used to retrieve the data from the database. All RowSet objects have
properties that are defined as getter and setter methods in the implementation classes. The BaseRowSet abstract
class helps to set and get the required properties in JDBC RowSet implementations. All the RowSet reference
implementations inherit this class; and therefore, have access to the methods of the BaseRowSet class.

As you know that the connection can be obtained in two different ways, either by using the DriverManager
mechanism or by using DataSource object. In both these ways, you need to set the username and password
properties. In case of DriverManager, you need to set the url and in case of the DataSource object, you need to
set the data source name property. You should note that the default value for the type property is
ResultSet TYPE_SCROLL_INSENSITIVE, and for the concurrency property is
ResultSet.CONCUR_UPDATABLE. If you are working with a driver or database that does not offer scrollable
and updatable ResultSet objects, you can use a RowSet object populated with the same data as a ResultSet
object; thereby, making the ResultSet object scrollable and updatable.

A listener for a RowSet object is a component that is to be notified whenever a change or called event occurs in

the RowSet object. Due to any of the following changes, the RowSet interface generates an event that is handled

by the listeners:

O A cursor movement

Q The update, insertion, or deletion of a row

0 A change in the entire RowSet content

The listeners must be registered with the RowSet class to receive notifications from a particular RowSet.

Therefore, all listeners must implement the RowSetListener interface. A listener for a RowSet object

implements the following methods defned in the RowSetListener interface corresponding to the three events

discussed in the preceding list:

0 cursorMoved —Includes the actions that a listener should perform when the cursor in the RowSet object
moves

0 rowChanged—Specifies the actions that a listener should perform when one or more column values in a
row are updated, a new row is inserted, or an existing row is deleted

543

Chapter 13

QO rowSetChanged —Specifies the actions that the listener should petform when the entire RowSet object is
populated with new data

Depending on the implementation of an application, the JDBC RowSet objects are categorized as:

Cennected RowSet objects

Disconnected RowSet objects

JdbcRowSet objects

CachedRowSet objects

WebRowSet objects

FilteredRowSet object

JoinRowSet objects

Let’s explore these in detail next.

Connected RowSet Objects

A Connected RowSet object creates a connection to a database, by using JDBC driver, and maintains that
connection throughout its lifetime. JdbcRowSet is one of the standard Connected RowSet implementations.
The JdlcRowSet object is connected to a database, which makes it similar to the Result$et object. In addition,
the JdbcRowsSet object is often used as a wrapper to make a nonscrollable and read-only ResultSet object
scrollable and updatable.

Disconnected RowSet Objects

A disconnected RowSet object makes a connection to a data source only to read data from the ResultSet object
or write the data back to the data source. After reading or writing data to its data source, the RowSet object
disconnects from the data source. As a disconnected RowSet object does not connect to its data source; thereby,
the object performs the task of reading and writing data independently. The disconnected RowSet objects are
serializable as well as lightweight compared to a JdbcRowSet or ResultSet object. Due to this reason, the
disconnected RowSet objects are efficient for thin clients.

Figure 13.48 shows the CachedRowSet interface, which defines the capabilities available to the disconnected
RowSet object:

Oo0oO0O0O0OoD

java.sql I javax.sqgl.rowset]

<<intarface>> <<interface>> <<interface>> <<interface=>
ResuitSet CachedRowSet WebRowSet JoinRowSet

java.sqll com.sunfrowset

<<interface>> CachedRowSetimpl WabRowSetlmpl JoinRowSetlmpl
RowSet

Figure 13.48: Displaying the RowSet Inheritance Hierarchy
JdbcRowSet Objects

The JdbcRowSet object is simply a wrapper around the ResultSet object and always maintains a connection
to its data source, similar to a ResultSet object. The main difference between a JdbcRowSet and ResultSet
object is that a JdbcRowSet object has a set of properties and also participates in the JavaBeans event model.

544

Working with JDBC 4.0

The use of the JdbcRowSet: object makes it a Java3eans component. A JdbcRowSet object can be used this
way because it is effectively a wrapper for the driver that has obtained its connection to the database. Another
benefit of using the JdbcRowSet object is that it makes a ResultSet object as scrollable and updatable. All Rowset
objects are scrollable and updatable by default. For example, a JdbcRowSet object populated with the
ResultSet data is also scrollable and updatable.

The JdbcRowSetImpl is used as a default constructor to create new instances of the JdbcRowSet objects. A new
instance is initialized with default values in the BaseRowSet class, which can be set with new values when
required. The commands and properties needed to establish a connection are set, and after which the
execute () method is invoked. The new instance does not work until the execute () method is called.

The following code snippet creates a new JdbcRowSetImpl object, sets the command and connection
properties, sets the placeholder parameter, and then invokes the execute () method:
- JdbcRowserImp) - jrs = new JdbcRowSetImpl(); .
jrs.setCommand("SELECT * FROM TITLES WHERE TYPE = 7")
jrs. SetuRL (“jdbomyDriver: myAttribute“), : :
jrs.setusername(” cervantes”) o :
_ jrs.setPassword(“sanche™); -
s setString(l, "BIOGRAPHY™)
jrs.execute(};
The preceding code snippet performs the following tasks:

0O Establishes a connection between the RowSet and the database
O Creates a PreparedStatement object to make a program more interactive and sets its placeholder

parameters
O Executes the statement provided in the setCommand() method to create a ResultSet object
CachedRowSet Objects

The CachedRowSet object inherits the JdbcRowSet class, in addition to its own capabilities and additional
features. This object caches its rows in memory; therefore, it does not need to always connect to its data source.
Usually, the CachedRowSet object retrieves rows from a ResultSet object but it can also contain rows from
files in tabular formats, such as spreadsheets. The CachedRowSet object is a disconmected RowSet and connects
with the data source only when it is reading the data to populate the rows or when it is updating changes in the
underlying data source. You can perform the following functions with a CachedRowSet object:

Create a CachedRowSet object

Set the properties of the CachedRowSet object

Fill a CachedRowSet object

Read data from the CachedRowSet object

Retrieve the RowSetMetaData object

Update a CachedRowSet object

Let's discuss each of these in detail.

Creating 3 CachedRowSet Object

The default implementation for the CachedRowSet object creates a CachedRowSet object. The default
constructor is used to create the new instance. The following code snippet shows how to create a new instance of
the CachedRowSet object:

| CachedRowSetTaN). croeaew CachedROWSetImpT ()55 i il el iy e i
In the preceding code snippet, the properties of the CachedRowSet ob]ect are set to the default properhes of the
BaseRowSet object. In addition, the CachedRowSet object has one synchronization provider object
RIOptimisticProvider of the SyncProvider type. The classes and interfaces for synchorization provider
implementation are provided by the javax.sql.rowset.spi package. The RowSetReader is used by the
RIOptimisticProvider objects to read data into the CachedRowSet object, as this RowSet object does not contain
any established connection to the database. This RowSetReader object obtains a connection by using the values
set either for username, password, and JDBC URL; or for the data source name. The RIOptimisticProvider

0OCco0oO0oaQo

545

Chapter 13

provider also provides the RowSetWriter object to synchronize any changes made to the rows of the
CachedRowSet object while it was disconnected from the underlying data source. If you are not using the
RowSetWriter object, the SyncProvider objects are retrieved from the SyncFactory class. The following
code snippet is used to get the list of synchronization providers in a CachedRowSet object:
Java.utiloEnumeration’ Providers=Syncractory. getRegisteredProvidens Qs oo o i

The method mentioned in the preceding code snippet returns the list of providers to specnfy a partlcular
SyncProvider object that the CachedRowset object can use. The following code snippet shows how to create
the 1nstance of the CachedRowSet ob]ect by prov1dmg a spemﬁc Sync Prov1der ob]ect

Setip| (-con: Frad.providars iahivas BT, ,
The ‘value for the synchronization parameter can be set usmg the setSynchProv:Lder (ymethod of
CachedRowSet.:

e sersyncProvider (Tcon fred: providers sighavai i

Setting the Properties of the CachedRowSert Object
All RowSet objects have common properties, therefore, the properties for the CachedRowSet objects are to be set

by using the setter methods available in the RowSet interface. The following code smppet shows how to set the
va.lues for the CachedRowSet ob]ects

SHI G

In the precedmg code sm.ppet the se tCommand method is used to set the command property, which is a query
that produces the ResultSet object. You can read data into a RowSet object from a ResultSet object.
Fifling a CachedRowSet Object

To populate data from ResultSet object to RowSet object, you only have to call the execute () method on the
CachedRowSet object, as shown in the followmg code smppet

In the preceding code snippet, when the execute ()method is called, the reader of the disconnected RowSet
object works behind the scene. The execute ()methed is provided by the default SyncProvider object,
RIOptimisticProvider. Then, the RowSetReader object gets a connection to the database either by using the
JDBC URL or the data source. Next, the reader object executes the query that is to be set for the command
property. The result of the query is saved in the ResultSet object, which is in turn provided to the CachedRowSet
object.

Reading Data from CachedRowSet Object
Data is read from a CachedRowSet ebject by using getter methods inherited from the ResultSet interface. The
following code snippet illustrates how the rows of the crs CachedRowSet object are iterated and the column
values of each row are read: =
e e i :

i

Retnewng RowbSetMeataData Object
The user can retrieve the information about columns in the CachedRowSet object by using the
RowSetMetaData object. The getMetaData() method of the ResultSet interface returns a
ResultSetMetaData object, which is further casted to the RowSetMetaData object. Finally, the object is

546

Working with JOBC 4.0

assigned to the rsmd variable. The following code snippet shows how to retrieve information in the
CachedRowSet object:

Updating a CachedRowSet object is similar to updating a ResultSet object. When the CachedrRowSet object
is disconnected from data source, the updates in the CachedrRowSet are performed; however, the results of
updates are not finally written to data source. To write the results of updates, a connection with the data source
has to be established. Therefore, after invoking the updateRow() or insertRow{) method, another method,
acceptChanges (), is called on the CachedRowSet object to write the update results on the database. During
the invocation of the acceptChanges() method, the RowSetWriterImpl object is called on the CachedRowSet
object internally, which establishes the cormection with the data source and also updates the changes in the data
source. :

The following code snippet shows the steps to update the CachedRowSet object:
#fupdare 3rd:and 4w column of . cir ; i T T It h
mﬁﬁ

s

In the preceding code snippet, a connection is established corresponding to each call of the acceptChanges ()
method, which is called after calling the updateRow () and insertRow() methods to change or insert multiple
rows. The advantages of using the CachedRowSet: objects are as follows:

Obtains a connection to a data source and execute a query

Reads the data from the resulting ResultSet object and populates itself with that data
. Manipulates data and make changes to data while it is disconnected

Recornects to the data source to write the changes back to it

Checks and resolves the conflicts with the data source)
The JDBC APT does not need to be implemented for using the CachedRowSet. objects. The CachedRowSet object
is serializable, which is the main reason to use a CachedRowSet object to pass data between different

components of an application. Working on a network environment, a cachedRowSet object can be used to send
the result of query that is executed by Enterprise JavaBeans.

WebRowSet Objects
A WebRowSet object has all the capabilities of a CachedRowSet object and is used to read and write the
database query results into an XML file. Enterprises on different locations and platforms can communicate
through XML; therefore, the XML language has become the standard for Web services communication. As
a consequence, a WebRowSet object solves a real problem by making it easy for Web services developers to write
the Web service programs to send and receive data from a database in the form of an XML document.

Creating and Populating a WebRowsSet Object

The new instance of the WebRowSet object can be created by using the reference of the WebRowSetImpl class.
The following code snippet shows the code to create an instance of the WebRowSet object:

OCc0D0D0

547

Chapter 13

webRowsSet wrs. = new webnwsum](),
wrs.populate(rs);

In the preceding code snippet, wrs has no data; however it has the default propernes of a BaseRowSet ob]ect
Its SyncProvider object is first set to the RIOptimisticProvider implementation, which is the default
configuration for all disconnected RowSet objects. You can set various properties, such as URL, username,
password for the WebRow5et object, as shown in the following code snippet:

WS setCommand(" SELECT <oll,col2 from emp™);
Wi sewnif“:l&?(; smySubprotocol 5mtaba96"2' i

A (TIsEramme) |

mmw&mamﬁ).
- wrs.pxecute(); .

The preceding code smppet sets the propertles for the WebRowSet ob]ect

Writing and Reading the WebRowSet Object to XML Document
The WebRowSet object can be used to read and write the data into an XML document. The readXML() methed is
used to read the data from the XML document; whereas, the the writeXML (} method allows you to write data
in the XML decument.

The uses of the writeXML () and readsML () methods are described as follows:

O Using the writeXml() method — Writes the invoked WebRowSet object as an XML document that represents
the current state of object. The method writes the XML document to the streamn that is passed to it. The
stream can be an QutputStream object, such as a FileQutputStreamn object, if the user wants to write in
binary format; or a Writer object, such as a FileWriter object, if the user wants to write in characters.

The following code snippet writes the wrs WebRowSet object as an XML document to the FileOutputStream

object fileOutputStream

jmw File0i o it

e rmmwmm H '

The FileWriter ob]ect is used to write the character data to an XML flle, as shown in the followmg Code smppet
i e Filewriter: ﬁ%mnter R Y
CowEs Wi tex T OF Tewriery .

Two variations of the writeXML() method fileQutputStream() and fileWriter(}, are used for the WebRowSet

object with the content of a ResultSet object before writing it to a stream, as shown in the followmg code smppet

priceList.writexmi{rs, FHLOOULHUESTrewn):

p:-icet.'ist‘writem(rs. FHlewriter); 5
Q Using the readXml() method—Parses an XML document to construct the WebRowSet object. Sm'ular to
writing, an XML document, which is to be read, is represented by the FileInputStream or FileWriter object
and is passed to the read XML() method.
The following code snippet explains how to read from XML document into a WebRowSet object:
Jjavayio.FileInputstrean fiiemwﬁtrm - new” jas@. wﬁmmmm{ w:n
iimres ceadyal (F4 TeInputstream) ;. : R L P ’
The fileReader object is used to read the XML character datatoa WebRowSet ob]ect as shown in the followmg
code snippet:
13&1&‘3@.5‘:1%&1‘ Filereader = new }m m.ﬁ?mmr "mw e e
“wirs. readxm] (Filereader); N
Using the WebRowsSet Object in XMLFormat
The WebRowSet object contains data; and the properties and metadata about the columns. The WebRowSet: XML
schema is an XML document that defines the content of an XML document. It also defines the format in which the
document must be presented. This schema is used by both the sender and recipient because it tells the sender
how to write the XML document and the receiver how to parse the XML document. The XML document
representing a WebRowSet object includes the following three types of information:

V‘)*’:

O Properties of WebRowSet object—Refer to standard synchronization provider properties, including
general RowSet properties. A WebRowSet object is created and populated from a table having two rows
and five columns from a data source. The standard writeXML() method describes the internal properties of
the WebRowSet object.

Working with JDBC 4.0

aEr o FN

The following code snippet shows the use of the writeXML() method to describe the internal properties:

O Metadata—Describes the metadata associated with the tabular structure used by a WebRowsSet object,

Metadata is similar to the java.sqlResultSet interface. The WebRowSet object is also used to retrieve the
metadata information about the ResultSet interface.

The following code snippet shows the columns that are described between the column definition tags:

</colimn-definiti
<column-definiri

T NS T
B Gt if%**‘

g;g”r’iﬁbt*&i’ je</suabchabies

" <column-display-sizex39</column-display-sizes

Chapter 13

£

“<column-Tabel>CoL2</colpmn-labe]l=

0 Data—Describes the data available in a database before the cha onization of
the WebRowSet object. This helps to evaluate the changes between the original and current data. A
WebRowSet object contains the ability to synchronize the changes in its data back to the data source. The
WebRowSet object provides a table structure and the CurrentRow tag is used to map each row of table. A
columnValue tag can contain either the StringData or binaryData tag, depending on its SQL type. You
should note that the BLOB and CLOB data types use binaryData tag, They describe a WebRowSet object
that has not undergone any changes since its instantiation.

The following cod

e e
ey

it

WebRowSet Objects
Different operations can be performed on the WebRowSet object to update it. You can update the WebRowSet
object by deleting, inserting, and updating an existing row, which are explained as follows:
Q Deleting a row—Removes the row from a WebRowSet object. To delete a row, move the cursor to the
desired row and invoke the deleteRow method.
The following code snippet shows the deletion of a row, in which the wrs WebRowSet object is used to delete the
third row:

550

Working with JDBC 4.0

g L P s
sTarnE SR

o : Wmm e .ﬁﬁwﬁmw wmwm il

2 SERE R B

2 P Ry

5 Srisliiel ol

« At %Wwﬁw. aautar

-t Fhady i ; .

inser

v ase

F g i
¥
AL
e

B 23
..m w 9
: g
g £
= [T
W £ 2
i B =
= u =
@ ==
B [PR
ﬂ de m»ﬁ,
¢ £y £ :
i @ Oum uﬂwwu
4 S eb 5“
= 2 58 g S
s 5 b= .
it : 2T 2
3 §°¢ &
& L E- ..MJ
4+ £ g <}
T @ - -
Gk — O,M o
z BES i
S 2£73 & B
a .7} U =R
5 £88 g =
: > 2 .w..m 2 f: W m it Y
Mg R m EgEE e o e
. B £ Pt
E 32 Eg £ =
= B = 2@ £ 8§
: = = U =5
P2 2. 2 o E
e EE® S Z @
g i B E x-
R £]
= a.m.ne. ..m 4 EEE
g R z 3 iy
£ - E SaE
. oo T = & e
m Sy gl) e
g2 £ e
Y d.r.a.m A M
T de.m o 5
a W e
m g eg @ 3 2
SE S5 F]
U HW 5 Th W
5 2%gd 5 8
ey n o o ® . =
g g o =L @
s Y w S 3
g &7 £ &
|7 - _.m - . =
a ieires 2 g
i 98 EEE= o
s c 5 e = U Q@
o] Tt w U .m -
© w788 8
mot 9 5= e ©
g% Pase g X
D EE P g & 5
N 5 L Z, E
: @2 g ¥E B B
i o mw E.p. % [=]
w,;. p@ Immm m w 53 it
i - £ Bl g8 £ e
. £ % o St
. P o o
S0 =8= e

551

Chapter 13

0 Updating an existing row — Creates a specific XML file that holds both the updated value and the value that
is replaced. The value that is replaced becomes the original value, and the new value becomes the current
value. The following code snippet shows how to move the cursor to a specific row, perform some
modifications, and also update the row when the execuhon of the wrs ob]ect is completed:

wrs.absolute(5); - .. -
o m;msmuw%*
oS updateString (2, IV
{Wps.updateRow(l; o . i . -
The modi fyRow tag is used to update the WebRowSet ob]ect in an XML document Both the orxgmal as well as
updated values are associated within the tags for original row values tracking,

The followmg code snippet shows the process to update the WebRowSet ob]ect in a XML document

552

Working with JDBC 4.0

<columnvaliue>

- -c/ col ugmvalu»
</currentxew> : :

<fupdateva‘tue> s
<columnvalues . -

o <updateva]“¢>

O s b datevaTues
</modi FyRow>
</data>

FilteredRowSet Objects

A FilteredRowSet object allows the user to limit the number of rows that are visible in a RowSet object so
that the user can work only with the relevant data. The user can also apply more than one filter to
FilteredRowSet in one application to work with different sets of rows and columns each time. The filters
inherit a WebRowset object, which inherits the CachedRowSet object. Therefore, a WebRowSet object has the
capabilities of both the FilteredRowSet and CachedRowSet objects. In case of JdbcRowSet, filtering is
done by using query language, because it is always connected to a data source. The FilteredRowSet object
provides a method to filter data without executing a query on the data source, which in turn avoids having
connection with the data source and sending queries to it.

Creating a Fifter

A filter is created by using the javax.sql.RowSet.Predicate interface. Each application that wishes to
apply a filter must implement the Predicate interface. The FilteredRowSet object enforces filter constraints
in two directions, i.e., either column number or column name.

The followmg code snippet shows the snmpie implementation of the Predicate mterface

Chapter 13

The FilteredRowSet object can be used with the ResultSet object to populate the RowSet object. The
following code snippet shows the use of the ResultSet object to populate the RowSet object:

fosiext0”, y 108

In general, the Predicate objectis

: o Bt

initialized with the following features:

Q The lower limit of the range within which the values of a column number or column name must lie.

0 The upper limit of the range within which the values of a column number or column name must lie,

O The column name or number of the value, which must lie within the range of values set by the upper and

lower limits. Note that the range of values is inclusive, meaning that a value at the boundary is included in
the range.

Updating a FilteredRowSet Object
The Predicate interface can be applied on the FilteredRowSet object in a bi-directional manner. Any effort
to update the FilteredRowSet object that violates the set criteria throws the SQLException exception.
The range criteria for the FilteredRowSet object can be changed by applying a new Predicate object to the
instance of the FilteredRowSet object. After changing the criteria of FilteredRowSet, all the updates should be
done according to the new criteria set. Updating the FilteredRowSet object is same as updating the
CachedRowSet object.

JoinRowSet Cbjects

The JoinRowSet interface encapsulates the related data from RowSet objects that form a SQL JOIN
relationship. The Joinable interface provides the methods to set, read, and unset a match column, In addition, the
Joinable interface should be implemented by all the RowSet objects. The column matching process is the basis of
the SQL JOIN operation. The match column may be set by using the appropriate version of the JointRowSet
interface’s addRowSet() method. The main purpose of the JoinRowSet interface is to establish a S0L. JOIN
between disconnected Rowset objects, because they do not connect to data source to make SQL JOIN. A RowSet
object can become a part of SQL JOIN relation by adding the RowSet object with JoinRowSet object, because the
connected JdbcRowSet object extends the Joinable interface, The Joinable interface is not added in the
JoinRowSet object because it is always connected with the data source and can perform $QL JOIN by using
SOL query.
Exploring the Methods Used in the Joinable Interface

The Joirable interface has methods to specify a common column, based on which SQL JOIN is made.
However, it does not have the facility to add two RowSet objects into one, which is provided by the

JoinRowSet interface. You can set the JoinRowSet constants in the setfoinType method to define the type of the
join. The following SQL JOIN constant types can be set on the setJoinType method:

O CROSS_JOIN
FULL_JOIN
INNER_JOIN
LEFT_OUTER_JOIN
RIGHT_OUTER_JOIN

[= =y N

554

Working with JDBC 4.0

m

if no join type is provided, the INNER_JOIN join is set an the setJoinType method, as the default value.

Using a JoinRowsSet Object to form a JOIN
To form the basis of the JOIN relation, you first need to add the RowSet object to the JoinRowSet object. You
should note that when the JoinRowSet object is created, it is empty. Therefore, you should define the column in
which each RowSet object is to be added to the JoinRowSet object. The RowSet object contains a match column,
and the value in each match column should be comparable to the values in the other match column. A match
column can be set by using the following methods:

O Matching a column by using the setMatchColumr() method of the Joinable interface before a RowSet object
is added to a JoinRowSet object. The RowSet object must implement the Joinable interface to use this
method. After setting the match column value, the value can be reset by using the setMatchColumn
method at any time.

O Adding a column name or number, or an array of column names or numbers by invoking the addRowSet()
method. A match column parameter is passed as an argument in four of the five addRowSet{) methods.

The following code snippet adds two CachedRowSet objects to a JoinRowSet object. For simplicity, no SQL

JOIN type is set, so the default JOIN type, which is INNER_JOIN, is established.

The following code snippet shows the implementation of the]omRowSet object:

JoinRowSet jrs. = new. Joinmsatma’t(), :

-]rs addmwset(honus Lt :
In the preceding code snippet, the EMPLOYEES table, whose match column is set to the first column EMP_ID is
first added to the JoinRowSet object jrs. Then, the ESSP_BONUS_PLAN table with the same match column
EMP_ID is added. The rows in the ESSP_BONUS_PLAN table are added to jrs, only if the EMP_ID value
ESSP_BONUS_PLAN matches with an EMP 1D value in EMPLOYEE table. In broad terms, everyone in the
bonus plan is an employee so all the rows in the ESSP_BONUS_PLAN table are added to the JoinRowSet object.
The jrs is an inner JOIN of the two RowSet objects based on the EMP_ID columns. A program can traverse or
modify a RowSet. ob]ect by usmg RowSet methods, as shown in the followmg code smppet

JI‘ST f%st(’,i, furerles 3 . el 2iitiin Thiivhans

L int empinyeem . 3rs JgetIntfl)y:

string.employeeName = }rs,qaﬁtnwga), : . il el 2
The following code snippet adds an additional CachedRowSet ob]ect In thlS case, , the match column (EMP ID)
is set when the CachedRowSet object is added to the JoinRowSet object, as shown in the following code
snippet:

ResultSet rs3 = stmt.execureQuery("SELECT ¥ FROM:SITE"); i

CachedRowset site = new cacﬁeéRwSetmp'l{) ; : N

site:populatelrs3});
jrs.addrowset (site, 1)5

The JoinRowSet object rs now contains values from all three tables.

LirrRes

EEIT RIS I

Chapter 13

Working with Transactions

The DBMSs manage the databases over multiple environments where numerous users are working. There may
be chances of data loss over multiple environments and the users. Therefore, to overcome such problems, the
DBMS provides a mechanism to maintain data integrity within the DBMS. Transactions are used to ensure data
integrity when multiple users access and modify data in a DBMS. A database transaction includes the interaction
between the databases and users. Transactions are required to ensure data integrity, correct application
semantics, and a consistent view of data during concurrent access. In general, DBMS provides the feature of
Atomicity, Consistency, Isolation, and Durability for each transaction in a database. These properties are
collectively called the ACIDY (Atomicity, Consistency, Isolation, and Durability) properties.

Let’s know about the ACID properties.
ACID Properties

The ACID properties are maintained by the transaction manager of DBMS to retain the integrity of the data over
the database. Let’s describe the ACID properties for the transaction mechanism.

Atomicity

The guarantee of either all or none of the tasks of a transaction to be performed is defined as atomicity. This
property provides an ability to save (commit) or cancel (rollback) the transaction at any point, and controls all
the statements of a transaction,

Consistency
The Consistency property guarantees that the data remains in a legal state when the transaction begins and ends,
implying that if the data used in the transaction is consistent before starting the transaction, it remains consistent
even after the end of the transaction. If the data satisfies the integrity constraints of that type, it is known as
consistent data or data in legal state.

For example, if an integrity constraint specifies that the age should not be a character and should be a positive
value, a transaction is aborted during its execution if this rule is violated.

Isolation
The isolation is the ability of the transaction to isolate or hide the data used by it from other transactions until the
transaction ends. The isolation is done by preparing locks on the data. The following set of problems may occur
when the user performs concurrent operations on the data:

O Dirty Read—Specifies that a transaction tries to read data from a row that has been modified but yet to be
committed by other transactions.

O Non-repeatable Read — Occurs when the read lock is not acquired while performing the SELECT operation.
For example, if you have selected data under the T1 transaction, and meanwhile if the same is being
updated by some other transaction, say T2, then the T1 transaction reads two versions of data. This type of
data read is considered as non-repeatable read. It can be avoided by preparing a read lock by transaction T1
on the data that is has selected.

O Phantom Read—Specifies the situation when the collection of rows, retumed by the execution of two
identical queries, are different. This can happen when range locks are not acquired while executing the
SELECT query. Consider an example, where in a transaction T1, you have executed query Q1 and got some
results (say 10 rows). It is possible that during transaction T1I, another transaction T2 has made some
changes due to which the execution of the query Q1 within T1 now results in different number of rows {(say
11 rows). This problem is referred as phantom read problem, which happens if some other transaction
inserts a new record that is being used by an already running transaction.

Durability

The durability property guarantees that the user has been notified of the successful transaction, which can
persist all the statements in the transaction or leave the complete transaction unsaved. This property specifies

556

Working with JDBC 4.0

that after successful execution of the transaction, the system guarantees the updation of data in the database
even if the computer crashes after the execution of the transaction.

Types of Transactions

A database transaction is used to provide data integrity and security to the database. All the JDBC specific
drivers are required to provide transaction support for all the database operations. The database operations can
include concurrent access of data from a data source. These transaction mechanisms are used to provide a secure
way to access the data over multiple environments. The transaction mechanism is categorized into three
different types, which are as follows:

O Local transaction —Specifies a transaction whose statements are executed on a single transactional resource
through one resource object (that is, through one session). This type of transaction is based on only local
networks connected to the data source object. The local transactions are easier to use in a local network.
These transactions are not supported for the transactions in multiple networks on a distributed system.

0 Distributed transaction—Specifies a transaction whose statements are executed on one or more
transactional resources through multiple resource objects. In case of a distributed transaction, the
transaction manager is responsible for all the database specific operations. It must support all the ACID
properties of the transaction mechanism. A distributed transaction must be synchronized and available at
different locations.

0 Nested transaction —Specifies a transaction that occurs within the reference of another transaction. It must
also satisfy the ACID properties. The changes made by a nested transaction are not visible to the existing or
host transaction. The changes occurred in the nested transaction can be notified to the host transaction after
they have been committed. This satisfies the Isolation property of the transaction mechanism.,

Transaction Management

Transaction management in the database operation is necessary to maintain the integrity and security of data
from unauthorized access. The resource manager in a transaction management system can manage local
transactions because all the statements in it are assoctated with a single session. You need a transaction manager
to manage the transactional resource objects required to execute a SQL statement. The JDBC API includes the
support for transaction semantics associated with single Connection (Local Transaction) and support to
participate in transactions involving multiple resource objects (Distributed Transaction}. JDBC API allows you to
perform the following operations to execute a transaction containing multiple resource objects:

O Setting the Auto Commit attribute— Allows you to specify when to end a transaction. Executing a
transaction is either dependent on a JDBC driver or the underlying data source. JDBC API does not have
any method to start the transaction explicitly. New transaction generally starts when you execute a SQL
statement, such as calling the execute, executeUpdate, or executeQuery methods that require a transaction.

The Auto Commit atiribute of connection can be set by using the setAutoCommit (boolean) method of
connection, and calling this method with the true argument enables auto commit. On the other hand, calling the
setAutoCommit (boclean) method of connection with the false argument disables auto commit. Moreover,
JDBC driver provider decides the default argument for the Auto Commit attribute, but in general, it is set to true.
If Auto Commit is enabled, JDBC driver commits the transaction as soon as each individual SQL statement is
complete. The point at which a statement is considered complete depends on the type of SQL statement as well
as what the application does after executing it. For DML (Insert, Update, Delete) and DDL statements, the
statement is complete as soon as its execution completes. The following code snippet is used to set the Auto
Commit mode before creatmg anew transaction:

If Auto Commit is dlsabled the transaction must be exp11c1tly ended by usmg the commit or rollback method
You can successfully end a transaction and save all the statements present in it by invoking the commit ()
method. However, invoking the rollback() method makes the transaction unsuccessful, implying that none of the
statements in the transaction are saved. You can disable the auto commit option if you want to group multiple

557

Chapter 13

statements into a single transaction and then decide to save or not to save the statements at the end of the
transaction.

O Setting the isolation levels—Notify the visible data within a transaction. There are four isolation levels
used in transaction management, which are as follows:

* READ UNCOMMITED — Notifies the occurrence of dirty, non-repeatable, and phantom reads.
* READ COMMITED — Notifies the occutrence of non-repeatable and phantom reads.
* REPEATABLE READ-— Notifies the occurrence of only phantom reads.

* SERIALIZABLE--Specifies that all transactions occur in a completely isolated fashion. Dirty, non-
repeatable, and phantom reads cannot occur at this isolation level.

The isolation level in a transaction can be specified by using the connection object passed by the connection. The
default isolation level is always specified by the underlying data source. Sometimes, the user needs to specify the
isolation level explicitly. The JDBC API provides the setTransactionIsolation(int) method to set the
transaction isolation for a transaction. Similarly, the petTransactionlsolation() method is used by the user to
retrieve the transaction isolation associated with a connection. If a driver used in a connection does not support
the isolation level, the method throws a SQLException.

* Savepoints —Set points within a transaction. A Savepoint specifies a mark up to which the user can roll
back without affecting the rest of the changes of a transaction. The DatabaseMetaData interface
available in JDBC API provides the methods to support the Savepoint within a transaction. The JDBC
APl provides the setSavepoint(String) method of the Connection interface to set a Savepoint in a
transaction. The transaction can be rolled back up to the Savepoint by using the rollback (savepoint)
method of the Connection interface. The following code snippet shows how to set a Savepoint and
rollback mechanism in a database:

Statement ‘s = conti.createStatement();

The preceding code snippet shows how to insert a record into a table in a database, and set a Savepoint, sp, in
the database. The INSERT statement is successfully updated in the database. In the second insertion operation,
the transaction is rolled back to the sp Savepoint. Therefore, this transaction is cancelled and the changes made
to the database by the second INSERT statement are undone due to the calling of the rollback. You should note
that the first INSERT statement is committed even after the roltback of the second INSERT statement.

The Savepoints created during a transaction need to be released after the completion of the database transaction.
The releaseSavepoint () method of the Connection interface can be called to release the Savepoints. In other
words, the releaseSavepoint() method removes the specified Savepoint from the current transaction. After a
Savepoint has been released, the attempts to reference the current transaction in a rollback operation causes a
SQLException to be thrown.

To understand the concept better, let’s create an application called TranMGT. In this application, you need to
create a java (TransferAmount java) file, which is used to perform transaction management. The code snippet
for the TransferAmount.java file is shown in Listing 13.21 (you can find the TransterAmount.java file in
the code\ JavaEE\ Chapter13\ TranMGT folder on the CD}:

558

Working with JDBC 4.0

Listing 13.21: Showing the Code for the TransferAmountjava File

The application shown in Llstmg 13.21 is used to transfer money from one account to another in a transachon A
table, bank, must be created before executmg Llstmg 13.21, as shown in the followmg code smppet

'The bank table is created at the Run SQL Command Line prompt to execute the TransferAmount java
application. The data in the bank table is used by the application to transfer the amount, and the output of this
table is shown in Figure 13.49:

Chapter 13

&R Run 5QL Command tine

H R %
Figure 13.49: Creating a Table and Inserting Data
Figure 13.49 shows the creation of the required table (bank) for the application shown in Listing 13.21. The
application uses the content of the table and performs the transaction. It uses the common SQL queries to update

the database and also shows the transaction management by using the Savepoints and rollbacks. Figure 13.50
shows the output of the TransferAmount class:

Figure 13.50: Showing the Output of TransferAmount.java

Figure 13.50 shows the output of the application created in Listing 13.30 by using the transaction properties. The
application initially sets the auto-commit mode as it starts a new transaction in the given data source. Then, the
required transactions update the records in the database. The transaction is committed after the updation
process is complete. However, if an error occurs, the transaction can be rolled back to undo the changes made to
the database.

Summary

In this chapter, you have learned about JDBC and its basic architecture. The chapter has further explored various
JDBC drivers that help an application to establish connection with a database. Next, the chapter has discussed
about the new features of JDBC 4.0 and advanced topics, such as Resultset, Updateable, and Scrollable Resultset,
batch update, advanced data types, and Rowset. Further, you have learned how to develop the client-server
applications by using the java.sql and javax.sql packages of JDBC APL Finally, you have learned to
manage and work with transactions in JDBC applications.

In the next chapter, we discuss how to develop Web application using ASP.NET.

Working with JDBC 4.0

Quick Revise
Q1. Whatis JDBC?
Ans. JDBC is a specification from Sun Microsysters that provides a standard abstraction (API / Protocol) for
Java applications to communicate with different databases.

Q2. What are the components of JDBC?
Ans. The components of JDBC are as fotlows:
O The]JDBC APL
Q The JDBC DriverManager
G The JDBC Test Suite
G The JDBC-ODBC Bridge
Q3. Explain the different types of JDBC drivers.
Ans. The different types of JDBC drivers are as follows:
Q Type-1 Driver: Refers to the Bridge Driver (JDBC-ODBC bridge)
Q Type-2 Driver: Refers to a Partly Java and Partly Native code driver
0 Type-3 Driver: Refers to a pure Java driver that uses a middleware driver to connect to a database
O Type-4 Driver: Refers to a Pure Java driver, which is directly connected to a database
Q4. Name the packages that are used to implement JDBC in an application.
Ans. The java.sql and javax.sql packages are used to implement JDBC in an application.
Q5. State the properties of connection pocling,
Ans. The properties of connection pooling are as follows:

maxIdleTime

0 maxStatements
O inttialPoolSize
U minPoolSize

Q maxPoolSize

=]

u]

propertyCycle

Qeb. Name the class that is used to establish a connection to a database.

Ans. The java.sql.Connection class is used to obtain a connection to a database.

Q7. Write the code statements used to register the Driver object with the DriverManager class.

Ans. The code statements used to register the Driver object with the DriverManager class are as follows:

Class.forName (“sun.jdbc.odbc.idbcodbcDriver™”);

where the sun.jdbc.odbc. dbecodbebriver class contains the following code:
public class JdbcodbcDriver extends .. {

static { Drivermanager.registerbriver (new sun,jdbc.odbe. JdbecOdbchriver)); }

08. List the different types of RowSet objects.

Ans. The different types of RowSet objects are as follows:
Connected RowSet objects

Disconnected RowSet objects

JdbcRowSet objects

CachedRowSet objects

WebRowbSet objects

FilteredRowSet object

JoinRowSet objects

| S = Iy iy I

561

Chapter 13

Q9. Name the interfaces and classes of the javax.sql package that are used for connection pooling.
Ans. The interfaces and classes of the javax.sql package used for connection pooling are as follows:
O The javax.sql.ConnectionPooldataSource interface
O The javax.sql.PooledConnection interface
O Thejavax.sql.ConnectionEventListener interface
O The javax.sql.ConnectionEvent class
Q10. List the different advanced data types.
Ans. The different advanced data types are as follows:
0 BLOB data type
Character Large Object (CLOB) data type
Struct data type
Array data type
REF data type

0 0C0C

562

B
PART 4
CREATING

ASP.NET APPLICATIONS

